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Abstract 
This paper theoretically analyzes the effect of periodic suction on three dimensional flow of a viscous 
incompressible fluid past an infinite vertical porous plate embedded in a porous medium. The governing 
equations for the velocity and temperature of the flow field are solved employing perturbation technique 
and the effects of the pertinent parameters such as suction parameter α, permeability parameter Kp, 
Reynolds number Re etc. on the velocity, temperature, skin friction and the rate of heat transfer are 
discussed with the help of figures and tables. 
Copyright © 2010 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Flow problems through porous media over a flat surface are of great theoretical as well as practical 
interest in view of their varied applications in different fields of science and technology such as 
aerodynamics, extraction of plastic sheets, cooling of infinite metallic plates in a cool bath, liquid film 
condensation process and in major fields of glass and polymer industries. In view of these applications, a 
series of investigations were made to study the flow past a vertical wall.  Hasimoto [1] discussed the 
boundary layer growth on a flat plate with suction or injection. Gersten and Gross [2] analyzed the flow 
and heat transfer along a plane wall with periodic suction. Soundalgekar [3] studied the free convection 
effects on steady MHD flow past a vertical porous plate. Yamamoto and Iwamura [4], Raptis [5], Raptis et al. 
[6], Govindarajulu and Thangaraj [7] and Mansutti and his associates [8] investigated the free convective 
flow of viscous fluids along a vertical plate in presence of variable suction or injection under different 
physical situations. 
The phenomenon of free convection and mass transfer flow through a porous medium past an infinite vertical 
porous plate with time dependant temperature and concentration was studied by Sattar [9]. Hayat et al. [10] 
have analyzed the periodic unsteady flow of a non-Newtonian fluid. The unsteady MHD convective heat 
transfer past a semi-infinite vertical porous moving plate with variable suction was investigated by Kim 
[11]. Singh and Sharma [12] analyzed the three dimensional free convective flow and heat transfer 
through a porous medium with periodic permeability.  Chauhan and Sahal [13] analyzed the flow and 
heat transfer over a naturally permeable bed of very small permeability with a variable suction. Das et al. 
[14] numerically studied the effect of mass transfer on unsteady flow past an accelerated vertical porous 
plate with suction. Das and his co-workers [15] discussed the effect of mass transfer on MHD flow and 
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heat transfer past a vertical porous plate through a porous medium under oscillatory suction and heat 
source. 
The study reported herein analyzes the effect of periodic suction on the three dimensional flow of a 
viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium. The 
governing equations for the velocity and temperature of the flow field are solved employing perturbation 
technique and the effects of the pertinent parameters on the velocity, temperature, skin friction and the 
rate of heat transfer are discussed with the help of figures and tables. 
 
2. Mathematical formulation of the problem 
Consider the three dimensional flow of a viscous incompressible fluid past an infinite vertical porous 
plate embedded in a porous medium in presence of periodic suction. A coordinate system is chosen with 
the plate lying vertically on x*-z* plane such that x*-axis is taken along the plate in the direction of flow 
and y*-axis is taken normal to the plane of the plate and directed into the fluid which is flowing with the 
free stream velocity U. The plate is assumed to be at constant temperature Tw and is subjected to a 
transverse sinusoidal suction velocity of the form: 
v*(z*) = - V (1+εcosπz* / d),                                                                                                                        (1) 
 
where ε (<<1) is a very small positive constant quantity, d is taken equal to the half wavelength of the 
suction velocity. The negative sign in the above equation indicates that the suction is towards the plate. 
Due to this kind of injection velocity the flow remains three dimensional. All the physical quantities 
involved are independent of x* for this fully developed laminar flow. Denoting the velocity components 
u*, v*, w* in x*, y*, z* directions, respectively, and the temperature by T *, the problem is governed by the 
following equations: 
Continuity equation: 
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Energy equation: 
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ρ is the density, σ is the electrical conductivity, p*is the pressure, K * is the permeability of the porous 
medium,  ν is the coefficient of kinematic viscosity and k is the thermal conductivity. 
The initial and the boundary conditions of the problem are  
u* = 0, v* = -V (1+εcosπz* / d), w* = 0, T * = Tw

*  at  y* = 0, 
u*=U,  v* = V,   w*=0,  p*= p∞

*  as  y*→ ∞.                                                                                               (8) 
Introducing the following non-dimensional quantities 
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equations (2) - (6) reduce to the following forms: 

,0=
∂
∂

+
∂
∂

z
w

y
v

 (10) 

pe K
u

z
u

y
u

Rz
uw

y
uv −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

21
, (11) 

pe K
v

z
v

y
v

Ry
p

z
vw

y
vv −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21
, (12) 

pe K
w

z
w

y
w

Rz
p

z
ww

y
wv −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21
, (13) 

,
R
E

zyPRz
w

y
v

e

c

re
φ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

θ∂
+

∂

θ∂
=

∂

θ∂
+

∂

θ∂
2

2

2

21
 (14) 

 
where 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=φ
22222

2
z
u

z
v

y
w

y
u

z
w

y
v

, (15) 

Re = ν
Ud

 (Reynolds number), 
k
C

P p
r

µ
=  (Prandtl number), ( )**

wp
c

TTC
UE

∞−
=

2

(Eckert number), 

d
UK

K
*

p ν
= (Permeability parameter),

U
V

=α (Suction parameter).                                                         (16) 

 

The corresponding boundary conditions now reduce to the following form:  

u = 0,   v = 1+εcosπz,   w = 0,   θ = 1 at  y = 0, 

u=1,     v= 1, p= p∞ ,   w= 0,    θ =0   as y →∞.                                                                                       (17) 
 
3. Method of solution 

In order to solve the problem, we assume the solutions of the following form because the amplitude          
ε (<<  1) of the permeability variation is very small: 

u (y, z) = u0(y) + ε u1 (y, z) + ……                                                                                                            (18) 

v (y, z) = v0(y) + ε v1 (y, z) +……                                                                                                          (19) 
w (y, z) = w0(y) + ε w1 (y, z) + ……                                                                                                          (20) 

p (y, z) = p0(y) + ε p1 (y, z) +……                                                                                                            (21) 
θ (y, z) = θ0(y) + ε θ 1 (y, z) +……                                                                                                            (22) 

 

When ε =0, the problem reduces to the two dimensional free convective flow through a porous medium 
with constant permeability which is governed by the following equations: 

00 =
dy
dv

, (23) 
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The corresponding boundary conditions become  
u0 = 0,    v0 = -α, w0=0,   θ 0 = 1 at y = 0, 
u0= 1, p= p∞ , v0 =1, w0=0,     θ 0 = 0 as y→∞.                                                                  (26) 
 
The solutions for u0(y) and θ0(y) under boundary conditions (26) for this two dimensional   problem are 

mye)y(u −−= 10 , (27) 

( )my2yeRrP
1

yeRrP
0 eeme)y( −− −+= ααθ , (28) 

 
with   v0 = -α, w0 =0,   p0 =constant,                                                                (29) 

where 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+α+α=

p

e
ee K

R
RRm

4
2
1 22  and ( )re

rc

PRm
PmE

m
α−

=
221 . 

 
When ε ≠0, substituting equations (18)-(22) into equations (10) - (14) and comparing the coefficients of 
like   powers of ε, neglecting those of ε2, we get the following first order equations with the help of 
equation (29): 
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The corresponding boundary conditions are  
u1 = 0,    v1 = - αcosπz,    w1=0,   θ 1 = 0 at y = 0, 
u1=0,     v1=0, p1=0, w1=0,   θ 1 = 0 as y→ ∞.                                                                                         (35) 
 
Equations (30) - (34) are the linear partial differential equations which describe the three-dimensional flow 
through a porous medium. For solution, we shall first consider three equations (30), (32) and (33) being 
independent of the main flow component u1 and the temperature field θ1. We assume v1, w1 and p1 of the 
following form: 

zcos)y(v)z,y(v π= 111 , (36) 

zsin)y(v)z,y(w π′
π

−= 111
1

, (37) 
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zcos)y(p)z,y(p π= 111 , (38) 
 
where the prime in )(11 yv′  denotes the differentiation with respect to y.  Expressions for v1(y, z) and w1(y, 
z) have been chosen so that the equation of continuity (30) is satisfied. Substituting these expressions (36)-
(38) into (32) and (33) and solving under corresponding transformed boundary conditions, we get the 
solutions of v1, w1and p1 as: 
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In order to solve equations (31) and (34), we assume 

zcos)y(u)z,y(u π= 111 , (41) 
zcos)y()z,y( πθ=θ 111 . (42) 

 
Substituting equations (41) and (42) in equations (31) and (34), we get 
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The corresponding boundary conditions are  
u11 = 0,  θ 11 = 0  at y = 0, 
u11=0,    θ 11 = 0 as y→ ∞.                                                                                                                        (45) 
 
Solving equations (43) and (44) under boundary condition (45) and using equations (18), (22), (25) and 
(26), we get 
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3.1 Skin friction 

The x- and z-components of skin friction at the wall are given by  
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Using equations (46) and (40) in equation (48) and (49) respectively, the x- and z-components of skin 
friction at the wall become 
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3.2 Rate of heat transfer 
The rate of heat transfer i.e. heat flux at the wall in terms of Nusselt number (Nu) is given by  
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Using equation (47) in equation (52), the heat flux at the wall becomes 
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4. Results and discussion 
The problem discusses the effect of periodic suction on three dimensional flow of a viscous 
incompressible fluid past an infinite vertical porous plate embedded in a porous medium. The governing 
equations for the velocity and temperature of the flow field are solved employing perturbation technique 
and the effects of the flow parameters on the velocity and temperature of the flow field and also on the 
skin friction and the rate of heat transfer have been discussed with the help of Figures 1-5 and Tables 1-
2, respectively. 
 
4.1 Velocity field 
The velocity of the flow field is found to change substantially with the variation of suction parameter α, 
permeability parameter Kp and Reynolds number Re. These variations are show in Figures 1-3.  
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The effect of permeability of the medium on the velocity of the flow field is shown in Figure 1. Keeping 
other parameters of the flow field constant, the permeability parameter Kp is varied in steps and its effect 
on the velocity field is studied. It is observed that a growing permeability parameter has an accelerating 
effect on the velocity of the flow field. 

 

 
 

Figure 1. Velocity profiles against y for different values of Kp with Re = 1, Pr= 0.71, α = 0.2,  
Ec = 0.01,ε = 0.2, z = 0 

 
 

 
Figure 2. Velocity profiles against y for different values of α with Re = 1, Pr= 0.71,  

Kp =1, Ec = 0.01, ε = 0.2, z = 0 
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Figure 2, presents the effect of suction parameter α on the velocity of the flow field. The suction 
parameter is found to increase the magnitude of the velocity upto a certain distance (y=1.3) near the plate 
and thereafter the flow behaviour reverses.  
Figure 3 depicts the effect of Reynolds number Re on the velocity of the flow field. A growing Reynolds 
number leads to increase the velocity near the plate upto y=2 and thereafter, it retards the effect. The 
behaviour of Reynolds number is similar to the suction parameter in this respect. 

 

 
 

Figure 3. Velocity profiles against y for different values of Re with α = 0.2, Pr= 0.71,  
Kp  = 1, Ec = 0.01, ε = 0.2, z= 0 

 
4.2 Temperature field 
The variation in the temperature of the flow field is due to suction parameter α and Reynolds number Re. 
The effects of these parameters on the temperature field are discussed graphically with the help of 
Figures 4-5.  
In Figures 4 and 5, we present the effect of suction parameter α and the Reynolds number Re respectively 
on the temperature of the flow field. A careful observation of the above figures shows that the effect of 
growing suction parameter or Reynolds number leads to enhance the temperature of the flow field at all 
points.  
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Figure 4. Temperature profiles against y for different values of α with Re = 1, Kp = 1,  
Pr = 0.71, Ec = 0.01, ε = 0.2 

 

 
 

Figure 5. Temperature profiles against y for different values of Re with Pr = 0.71,  
Kp = 1, α = 0.2, Ec = 0.01, ε = 0.2 

 
4.3 Skin friction 
The variations in the value of x- and z-components of skin friction at the wall for different values of 
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growing suction parameter is to enhance the magnitude of both the components of skin friction at the 
wall. 
 

Table1. x- and z-component of skin friction (τx, τz) against α for different values of Kp with Re=1 
Pr=0.71, Ec = 0.01, α=0.2, ε =0.2 and z = 0 (=1/2 for τz) 

 
Kp=0.2 Kp=1.0 Kp=5.0 Kp=10.0  

α τx τz τx τz τx τz τx τz 

0.0 2.4495 0.0000 1.4142 0.0000 1.0955 0.0000 1.0488 0.0000 
0.2 2.8162 -0.1293 1.7205 -0.1295 1.3856 -0.1297 1.3367 -0.1298 

0.5 3.4317 -0.3382 2.2620 -0.3394 1.9135 -0.3396 1.8632 -0.3398 

2.0 7.7599 -1.6834 6.5651 -1.7057 6.3043 -1.7106 6.2722 -1.7112 

5.0 22.762 -6.2661 21.947 -6.4261 21.821 -6.4604 21.806 -6.4648 

 
 

4.4 Rate of heat transfer 
The rate of heat transfer at the wall i.e. the heat flux in terms of Nusselt number Nu for different values of 
α and Kp are entered in Table 2. The heat flux at the wall grows as we increase the suction parameter in 
the flow field and the effect reverses with the increase of permeability parameter. 
 
 

Table 2. Rate of heat transfer (Nu) against α for different values of Kp with Re = 1, Pr = 0.71, α = 0.2, 
Ec = 0.01 and ε = 0.2 

 
 

 
 

5. Conclusion 
From the above analysis, we summarize the following results of physical interest on the velocity and 
temperature of the flow field and also on skin friction and the rate of heat transfer at the wall. 
    
1.  The effect of growing permeability parameter is to accelerate the velocity of the    flow field at all 

points. 
2.  A growing suction parameter / Reynolds number is to enhance the magnitude of velocity of the flow 

field near the plate upto a certain distance and thereafter the flow behaviour reverses. 
3.  An increase in suction parameter/Reynolds number increases the temperature of the flow field at all 

points. 
4.  The permeability parameter decreases the x-component and increases the   magnitude of z-

component of skin friction at the wall. On the other hand, the effect of increasing suction parameter 
is to enhance the magnitude of both the components of skin friction at the wall. 

5.   A growing suction parameter enhances the rate of heat transfer at the wall, while a growing 
 permeability parameter in the flow field reverses the effect.   

Nu  

α Kp=0.2 Kp=1.0 Kp=5.0 Kp=10.0 

0.0 0.008696 0.005020 0.003889 0.003723   

0.2 0.186269 0.181441 0.180830 0.180797 

0.5 0.465496 0.461281 0.460627 0.457991 

2.0 2.158400 2.145131 2.120497 2.024807 

5.0 9.873545 9.354939 9.287622 9.280233 
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