International Journal of ENERGY AND ENVIRONMENT

Volume 1, Issue 5, 2010 pp.823-832 Journal homepage: www.IJEE.IEEFoundation.org

Physicochemical properties of polluted water of river Ganga at Varanasi

Singh Namrata

Department of Zoology, HarishChandra post Graduate College, Varanasi, India.

Abstract

Ganga river basin, which was comparatively free from anthropocentric activities until the 1940s, became a disposal site for agricultural, industrial and sewage wastes after independence of India in 1947. Discharge of waste generated due to developmental activities and demographic explosion in the basin degraded the water quality. Present paper deals with the impact of pollution on Ganga water at six different sites i.e. Assi Ghat, Shiwala Ghat, Chauki Ghat, Harishchandra Ghat, Rajendraprasad Ghat, and Raj Ghat. During investigation waste water was collected from six different sites to evaluate physicochemicalproperties of Such as Temperature, pH, Acidity, Alkalinity, DO, BOD, COD, Chloride, Electrical conductance, Nitrate, Phosphate of river Ganga. The investigation reveals that Raj Ghat was highly polluted and Shiwala Ghat was least polluted.

Copyright © 2010 International Energy and Environment Foundation - All rights reserved.

Keywords: DO, BOD, COD, Electrical conductance.

1. Introduction

A number of investigation have been conducted to study the physicochemical properties of water in different Rivers [1-19]. The River Ganga is a part and parcel of every day life in the city and thousand of people bath daily in the river Ganga. Pressure on the river is increasing is enormously due to ever increasing population, industrial and urban growth in the river basins. At Varanasi about of domestic sewage and untreated industrial effluents along with the excreta of various warm blooded animals are directly or indirectly discharged into river Ganga which had adversely affected physicochemical property of river Ganga during the past couple of decades. In the present paper an attempt has been made to assess the impact of seasonal changes on the physiochemical properties of water of river Ganga at six selected sampling sites i.e. Assi Ghat, Shiwala Ghat, Chauki Ghat, Harishchandra Ghat, Rajendra Prasad Ghat, Raj Ghat. The water of river Ganga at aforesaid site was analyzed for Temperature, pH, Acidity, Alkalinity, Dissolved oxygen, Biological oxygen demand, Chemical oxygen demand, Chloride, Nitrate, Phosphate.

2. Material and method

Water samples were collected at monthly interval for a period of two years i.e.2006-2008 between 8.00 AM to 10.00 PM from six sampling sites i.e. Assi Ghat, Chauki Ghat, Harish Chandra Ghat, Shiwala Ghat, Rajendra Prasad Ghat and Raj Ghat.

Standard method for the examination of water and waste water was used (APHA [7]) for analysis. The temperature was recorded at the sites with the help of mercury thermometer the DO water samples were fixed with the help of magnous sulphate and alkali-iodide-azide solution (2ml each) at the sites and analyzed in the laboratory using wrinkler's modified iodide- azide method. The water samples were brought to the laboratory in ice boxes and subjected to the analysis of BOD (by incubating diluted sewage samples at 25° c for 5 days in dark) COD (by dichromate reflux method using a ferron indicator). pH using pH meter alkalinity and acidity (by the Potentiometric titration method with the help of pH meter and diluted H_2SO_4 and NaoH, Chloride by Mohr's argentometric method using Potassium chromate as indicator), Conductivity using conductivity meter), Phosphate (Stannous chloride method) and nitrate using the phenol – di sulphonic acid colorimetric test Jackson).

3. Result and discussion

Psicochemical properties of River Ganga variation in different months and at different at Ghats were recorded in Tables 1-6.

3.1 Temperature

It is the important factor which influence the chemical, biochemical and biological characteristic of the aquatic system .The present investigation reveals that the temperature varied from a minimum 20.1 ± 1.4 c in Jan (Shiwala Ghat) to maximum 33.8 ± 1.4 (Raj Ghat) in June. The Temperature values were significantly higher in April to July and lower in October to December.

3.2 pH

Because most of the chemical and biochemical reaction are influenced by the pH it is of great practical importance. The adverse affect of most of the acids appear below 5 and of alkalis above the pH 9.5. The pH values were significantly higher in March to May and September, November and December with the highest value 8.8 in Jan at Raj Ghat and lowest value 7.5 in June at Shiwala Ghat.

3.3 Acidity

The component of acidity in natural waters is Carbon dioxide. The Acidity values ranged from a minimum of 55.5 mg Caco₃/L (Oct) at Shiwala Ghat maximum of 69.3 mg Caco₃/L in June at Raj Ghat was recorded. Acidity values were significantly lower in Shiwala Ghat and higher at Raj Ghat .A sharp increase in acidity in May and June may be attributed to the high temperature and therefore high microbial activities or discharge of some acidic substances.

3.4 Alkalinity

It constitute an important parameter in determining the quality of water .A variation in alkalinity values were recorded as a minimum of $260 \text{mg Caco}_3/\text{L}$ (June) at Shiwala Ghat and a maximum of $310 \text{mg Caco}_3/\text{L}$ (Jan) at Raj Ghat. No significant variation was noticed among the values of other months Furthermore the total alkalinity was significantly higher in Raj Ghat than that of other sites.

3.5 Dissolved Oxygen

Temperature play an important role in determining DO in an aquatic body .Dissolved oxygen data are valuable in determining the water quality criteria of an aquatic system In the system where rate of respiration and organic decomposition are high ,the DO values remain lower than those of system where the rate of photosynthesis is high .A high pollution load may also decrease the DO values to considerable level .The DO values range from a minimum of 2.2mg/L (June) at Raj Ghat to maximum of 9.8mg/L (Jan) at Shiwala Ghat .Lower DO values during summer may be attributed to the high temperature and its consumption due to high growth and activities of microorganism.

3.6 Biological Oxygen demand

It has been used as a measure of the amount of organic materialism an aquatic solution which support the growth of microorganism .The BOD values range from 1.9mg/L (Jan) at Shiwala Ghat to a maximum of 87.5mg/L (June) at Raj Ghat. Usually higher BOD values in summer and lower in the rainy season were recorded No significant variation was observed between other sites.

3.7 Chemical Oxygen demand

COD determines the amount of oxygen required for chemical oxidation of organic matter using a strong chemical oxidant such as potassium dichromate under reflux conditions. The minimum COD values of 5.9mg/L (Jan) Shiwala Ghat and maximum of 170.5mg/L at Raj Ghat .The COD values were higher at Raj Ghat and Rajendra Prasad Ghat whereas no significant variation was observed between other Ghats.

3.8 Chloride

Chloride is one of the major inorganic anion in water and waste water. The chloride written shows variation with a range of 8.2 (July) at Shiwala Ghat to 81.5mg/L (Feb) at Raj Ghat.The Chloride vales remain higher in rainy season.

3.9 Electrical conductance

Electrical conductance is reciprocal to electrical resistance and G values shows total ion per cm . It is numerical expression of the ability of water sample to carry an electric current. The value ranged from maximum of 843μ s (Jan) at Raj Ghat to minimum of 185μ s (July) at Shiwala Ghat.

3.10 Nitrate

It represents the end product of oxidation of Nitrogenous matter and its concentration may depend on the nitrification and denitrification activities of micro organism. The concentration of microorganism ranged from 0.015 mg/L to 0.985 mg/L. The recorded values were significantly higher in July to Sep and Jan. The maximum Nitrate value was found 0.985mg/L (June) at Raj Ghat to minimum of 0.015mg/L (Jan) at Shiwala Ghat.

3.11 Phosphate

Phosphate is an important plant nutrient and plays a role of limiting factor among all other plant nutrient so its determination is useful .The value of Phosphate varies from minimum of 0.005mg/L (Jan) at Shiwala Ghat to maximum of 1.58mg/L (June) at Raj Ghat significantly lower phosphate content was recorded at Shiwala Ghat ,Chauki Ghat ,and Assi Ghat.

Table 1. Physicochemical properties of river Ganga at Assi Gh	(Avg. of two years i.e. Jan 2006-2008)
Table 1. Physicoche	(Avg. c

nat

rature 21.4 22.6 24.2 26.2 27.9 32.3 ± 0.9 ± 0.7 ± 1.4 ± 1.8 ± 2.2 ± 1.9 32.3 ± 0.2 ± 0.7 ± 1.4 ± 1.8 ± 2.2 ± 1.9 32.3 8.4 8.2 8.0 7.7 7.5 7.7 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.5 ± 1.4 ± 0.2 ± 0.4 ± 2.5 ± 0.3 ± 0.3 ± 0.5 ± 0.4 $inity(CaC$ 27.3 269 59.1 58.9 59.1 58.9 60.3 67.2 $inity(CaC$ 273 ± 22.6 58.9 59.1 58.9 60.3 67.2 40.2 $inity(CaC$ 2713 269 233.2 44.5 44.2 33.0 $inity(CaC$ 27.1 ± 0.2 ± 1.7 ± 1.8 ± 1.7 ± 1.8 ± 22.1 ± 2.6 $inimacld$	S. No	Parameter	Jan	Feb	Mar	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
	-	Temperature	21.4	22.6	24.2	26.2	27.9	323	31.1	30.2	27.6	24.5	24.1	22.3
pH 8.4 8.2 8.0 7.7 7.5 7.7 Acidity(CaCo ₃ ± 0.2 ± 0.4 ± 0.3 ± 0.5 ± 0.4 Acidity(CaCo ₃ 566 58.9 59.11 58.9 603 67.2 mg/L) ± 2.1 ± 2.5 ± 2.2 ± 3.0 ± 2.1 ± 2.9 Alkalinity(CaC 27.3 269 58.8 50.1 ± 2.9 ± 3.2 ± 2.9 Alkalinity(CaC 27.3 269 268 267 264 265 O ₃ mg/L) ± 0.4 ± 0.2 ± 3.2 ± 4.2 ± 3.2 ± 3.0 Dissolved 5.1 5.0 4.7 4.5 4.2 3.0 Dissolved 5.1 ± 0.2 ± 0.4 ± 3.2 ± 3.2 ± 3.2 Dissolved 5.1 ± 0.2 ± 1.2 ± 3.2 ± 3.2 ± 3.2 Dissolvenical 29.2 ± 1.2 ± 1.2 ± 3		(^C)	±0.9	±0.7	± 1.4	±1.8	±2.2	±1.9	±1.8	± 1.6	± 1.4	±1.5	±0.7	±0.8
± 0.2 ± 0.4 ± 0.3 ± 0.5 ± 0.4 Acidity(CaCo ₃) 566 58.9 59.1 58.9 603 67.2 $mg(L)$ ± 2.1 ± 2.5 ± 2.2 ± 3.0 ± 2.1 ± 2.9 Alkalinity(CaCo ₃) 566 58.9 59.1 58.9 603 67.2 $Mxalinity(CaC\pm 2.1\pm 2.5\pm 2.2\pm 3.0\pm 2.1\pm 2.90_3 mg(L)\pm 2.8\pm 3.2\pm 3.2\pm 4.2\pm 3.00_3 mg(L)\pm 2.8\pm 3.2\pm 4.2\pm 3.2\pm 3.00_3 mg(L)\pm 0.4\pm 0.2\pm 3.2\pm 4.2\pm 3.00_3 mg(L)\pm 0.4\pm 0.2\pm 1.7\pm 1.8\pm 1.7\pm 1.80_3 mg(L)\pm 0.4\pm 0.2\pm 0.1\pm 0.3\pm 0.5\pm 0.90_3 mg(L)\pm 0.4\pm 0.2\pm 1.7\pm 1.8\pm 1.7\pm 1.8\pm 2.20 xygenmg/L\pm 0.4\pm 0.3\pm 0.5\pm 0.9\pm 0.90 xygenmg/L\pm 1.7\pm 1.8\pm 1.7\pm 1.8\pm 2.20 xygen\pm 2.2\pm 1.6\pm 3.3\pm 2.2\pm 2.10 xygen\pm 2.6\pm 0.1\pm 0.3\pm 0.5\pm 0.90 xygen\pm 2.6\pm 1.6\pm 3.3\pm 2.2\pm 2.10 xygen\pm 2.6\pm 2.6\pm 3.3\pm 2.2\pm 2.60 xygen\pm 2.6\pm 2.6\pm $	2	Hq	8.4	8.2	8.0	7.7	7.5	7.7	7.6	7.9	8.1	8.2	8.3	8.4
Acidity(CaC03) 566 58.9 59.1 58.9 603 67.2 $mg(L)$ ± 2.1 ± 2.5 ± 2.2 ± 3.0 ± 2.1 ± 2.9 $Mkalinity(CaC2732692682672642650_3 mg(L)\pm 2.8\pm 3.2\pm 3.2\pm 3.2\pm 3.00_3 mg(L)\pm 2.8\pm 3.2\pm 3.2\pm 3.0\pm 3.30_3 mg(L)\pm 2.8\pm 3.2\pm 3.2\pm 3.00_3 mg(L)\pm 0.4\pm 0.2\pm 4.2\pm 3.00_3 mg(L)\pm 0.4\pm 0.2\pm 1.7\pm 1.3\pm 2.30_3 mg(L)\pm 0.4\pm 0.2\pm 1.7\pm 1.8\pm 1.70_3 mg(L)\pm 2.1\pm 1.8\pm 1.7\pm 1.8\pm 2.20_3 vygen\pm 2.1\pm 1.8\pm 1.7\pm 1.8\pm 2.2\pm 3.00_3 vygen\pm 2.1\pm 1.8\pm 1.7\pm 1.8\pm 2.2\pm 2.10_3 vygen\pm 2.1\pm 1.8\pm 1.7\pm 1.8\pm 2.2\pm 2.10_3 vygen\pm 2.6\pm 1.7\pm 1.8\pm 2.2\pm 2.10_3 vygen\pm 2.6\pm 1.6\pm 3.3\pm 2.2\pm 2.10_3 vygen\pm 2.6\pm 1.6\pm 3.3\pm 2.2\pm 2.10_3 vygen\pm 2.6\pm 2.6\pm 2.6\pm 2.6\pm 2.60_3 vygen\pm 2.6\pm 2.6\pm 2.6\pm 2.2\pm 2.60_3 vygen\pm 2.6$			±0.2	±0.4	±0.3	±0.3	±0.5	±0.4	±0.1	±0.2	±0.4	±0.4	± 0.3	±0.3
mg(L) ± 2.1 ± 2.5 ± 2.2 ± 3.0 ± 2.1 ± 2.9 Alkalinity(Cac 273 269 268 267 264 265 O ₃ mg(L) ± 2.8 ± 3.2 ± 3.2 ± 3.2 ± 3.3 Dissolved 5.1 5.0 4.7 4.5 ± 2.9 ± 3.0 Dissolved 5.1 5.0 4.7 4.5 ± 2.2 ± 3.0 Dissolved 5.1 5.0 ± 7.1 ± 6.5 ± 4.2 ± 3.0 Dissolved 5.1 ± 0.2 ± 0.1 ± 0.3 ± 0.5 ± 4.2 Dissolventical 29.2 31.6 40.2 44.2 43.2 Demand (mg/L) ± 21.6 ± 1.7 ± 1.8 ± 1.7 ± 1.8 ± 2.2 ± 2.1 Demand (mg/L) 29.6 ± 1.6 ± 3.3 ± 2.2 ± 2.1 ± 4.6 Oxygen ± 2.6 ± 1.6 ± 3.3 ± 2.2	3	Acidity(CaCo ₃	566	58.9	59.1	58.9	603	67.2	66.2	63.1	61.2	58.7	59.2	59.6
Alkalinity(CaC 273 269 268 267 264 265 0_3 mg/L ± 2.8 ± 3.2 ± 3.2 ± 3.2 ± 3.3 ± 3.0 Dissolved 5.1 5.0 4.7 4.5 4.2 ± 3.0 Dissolved 5.1 5.0 4.7 4.5 4.2 3.0 Dissolved 5.1 5.0 4.7 4.5 4.2 3.0 Dissolved 5.1 ± 0.2 ± 0.1 ± 0.3 ± 0.5 ± 0.9 Biochemical 29.2 31.6 33.2 40.2 44.2 43.2 Demand (mg/L) ± 2.6 ± 1.7 ± 1.8 ± 1.7 ± 1.8 ± 2.2 ± 2.1 Oxygen ± 2.6 ± 1.7 ± 1.8 ± 2.2 ± 2.1 ± 3.3 Oxygen ± 2.6 ± 3.3 ± 3.3 ± 4.6 ± 4.6 Oxygen ± 2.6 ± 3.3 ± 3.2 ± 4.6 ± 4.6 Oxygen ± 2.6 ± 3.3 ± 2.6		mg/L)	± 2.1	±2.5	± 2.2	±3.0	± 2.1	±2.9	± 1.6	± 1.4	± 1.7	±2.4	±2.6	±2.7
$\begin{array}{lclcrcl} 0_3 \mbox{mg/L} \} & \pm 2.8 & \pm 3.2 & \pm 3.4 & \pm 2.9 & \pm 3.2 & \pm 3.0 \\ \mbox{Dissolved} & 5.1 & 5.0 & 4.7 & 4.5 & 4.2 & 3.0 \\ \mbox{Dissolved} & 5.1 & 5.0 & 4.7 & 4.5 & 4.2 & 3.0 \\ \mbox{Biochemical} & 29.2 & 31.6 & 33.2 & 40.2 & 44.2 & 43.2 \\ \mbox{Demand} (\mbox{mg/L}) & \pm 2.1 & \pm 1.8 & \pm 1.7 & \pm 1.8 & \pm 2.2 & \pm 2.1 \\ \mbox{Demand} (\mbox{mg/L}) & \pm 2.6 & \pm 3.2 & \pm 1.6 & \pm 3.3 & \pm 3.9 & \pm 4.6 \\ \mbox{Oxygen} & \pm 2.6 & \pm 3.2 & \pm 1.6 & \pm 3.3 & \pm 3.9 & \pm 4.6 \\ \mbox{Oxygen} & \pm 2.6 & \pm 3.2 & \pm 1.6 & \pm 3.3 & \pm 3.9 & \pm 4.6 \\ \mbox{Chemical} & 57.5 & 58.6 & 60.1 & 64.2 & 69.7 & 77.6 \\ \mbox{Chemical} & 57.5 & 58.6 & 60.1 & 64.2 & 69.7 & 77.6 \\ \mbox{Chemical} & \pm 2.6 & \pm 3.2 & \pm 1.6 & \pm 3.3 & \pm 3.9 & \pm 4.6 \\ \mbox{Oxygen} & \pm 2.6 & \pm 3.2 & \pm 1.6 & \pm 3.3 & \pm 3.9 & \pm 4.6 \\ \mbox{Chloride} & \mbox{mod} (\mbox{mg/L}) & 29.8 & 28.6 & 22.1 & 20.5 & 19.0 & 19.8 \\ \mbox{Chloride} & \mbox{mod} (\mbox{mg/L}) & 29.8 & 28.6 & 52.1 & 20.5 & 19.0 & 19.8 \\ \mbox{Chloride} & \mbox{mod} (\mbox{mg/L}) & \ 29.8 & \ 22.1 & \ 20.5 & 19.0 & 19.8 \\ \mbox{Chloride} & \ 19.4 & \ 192 & 191 & 192 & 191 \\ \mbox{Conductance} & \ \pm 4.4 & \ \pm 4.6 & \pm 4.6 & \pm 3.8 & \pm 4.2 & \pm 4.8 \\ \mbox{(ms/L}) & 0.039 & 0.042 & 0.046 & 0.052 & 0.058 & 0.069 \\ \mbox{Nitrate} (\mbox{mo/L}) & \ 0.14 & 0.15 & 0.17 & 0.04 & 0.018 & 0.17 \\ \mbox{Plosphate} & 0.14 & 0.15 & 0.17 & -0.03 & +0.03 & +0.03 \\ \mbox{Plosphate} & 0.14 & 0.15 & 0.17 & +0.03 & +0.03 & +0.03 \\ \mbox{Plosphate} & 0.14 & 0.15 & 0.17 & +0.03 & +0.03 & +0.03 \\ \mbox{Plosphate} & 0.14 & 0.018 & -0.04 & +0.03 & +0.03 & +0.03 \\ \mbox{Plosphate} & 0.14 & 0.15 & 0.17 & +0.03 & +0.03 & +0.03 & +0.03 & +0.03 \\ \mbox{Plosphate} & 0.14 & 0.15 & 0.17 & +0.03 & +0$	4	Alkalinity(CaC	273	269	268	267	264	265	267	268	269	270	269	272
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		O ₃ mg/L}	± 2.8	± 3.2	±3.4	±2.9	±3.2	±3.0	± 2.5	± 2.2	± 2.4	±2.6	± 2.3	±3.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S	Dissolved	5.1	5.0	4.7	4.5	4.2	3.0	3.2	3.6	3.8	3.9	4.2	4.8
Biochemical 29.2 31.6 33.2 40.2 44.2 43.2 Oxygen. ± 2.1 ± 1.8 ± 1.7 ± 1.8 ± 2.2 ± 2.1 Demand (mg/L) 57.5 58.6 60.1 64.2 69.7 77.6 Chemical 57.5 58.6 60.1 64.2 69.7 77.6 Oxygen ± 2.6 ± 3.2 ± 1.6 ± 3.3 ± 4.6 demand (mg/L) ± 2.6 ± 3.2 ± 1.6 ± 3.3 ± 4.6 Oxygen ± 2.6 ± 1.6 ± 3.3 ± 3.9 ± 4.6 demand (mg/L) 29.8 28.6 22.1 20.5 19.0 Oxygen ± 2.6 ± 1.6 ± 3.3 ± 3.9 ± 4.6 demand (mg/L) 29.8 28.6 22.1 20.5 19.0 Chloride(mg/L) 29.8 28.6 22.1 20.5 19.0 Electrical 210 204 198 194 192 191 Conductance ± 4.4 ± 4.6 ± 3.8 ± 4.2 ± 4.8 (mS) 0.039 0.042 0.046 0.052 0.058 0.069 Nitrate(mg/L) 0.039 0.042 0.016 0.018 0.072 Plosphate 0.14 0.15 0.17 0.078 0.073 Plosphate 0.14 0.15 0.17 0.017 Plosphate 0.14 0.16 0.18 0.17		Oxygen (mg/L)	±0.4	± 0.2	± 0.1	± 0.3	± 0.5	±0.9	±0.9	±0.4	± 0.2	± 0.5	± 0.3	±0.6
Oxygen. ± 2.1 ± 1.8 ± 1.7 ± 1.8 ± 2.2 ± 2.1 Demand (mg/L) 57.5 58.6 60.1 64.2 69.7 77.6 Chemical 57.5 58.6 60.1 64.2 69.7 77.6 Chemical 57.5 58.6 60.1 64.2 69.7 77.6 Oxygen ± 2.6 ± 3.3 ± 3.9 ± 4.6 ± 4.6 demand (mg/L) 29.8 28.6 22.1 20.5 1900 19.8 Chloride(mg/L) 29.8 28.6 22.1 20.5 1900 19.8 Electrical 210 20.4 198 194 192 191 Conductance ± 44.6 ± 44.6 ± 3.8 ± 44.2 ± 44.8 Kitrate(mg/L) 0.039 0.042 0.046 0.052 0.058 0.069 Nitrate(mg/L) 20.09 ± 0.03 ± 0.04 ± 0.04 ± 0.02 0.075 Phosphate 0.14 0.03 0.01	9	Biochemical	29.2	31.6	33.2	40.2	44.2	43.2	41.6	38.6	37.5	36.5	35.3	31.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Oxygen.	± 2.1	± 1.8	± 1.7	± 1.8	± 2.2	± 2.1	±1.9	±0.8	± 2.2	±2.0	±2.3	± 2.1
		Demand (mg/L)												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Chemical	57.5	58.6	60.1	64.2	69.7	77.6	75.2	72.3	70.1	68.2	64.3	61.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Oxygen	±2.6	±3.2	± 1.6	±3.3	±3.9	±4.6	±3.2	±1.6	±3.6	±3.5	±3.5	±3.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		demand (mg/L)												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Chloride(mg/L)	29.8	28.6	22.1	20.5	19.0	19.8	14.9	16.6	18.9	20.5	26.2	30.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 0.5	± 0.3	± 0.4	±0.3	± 0.2	± 0.1	±0.2	± 0.2	± 0.4	± 0.5	± 0.7	±0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	Electrical	210	204	198	194	192	191	190	193	194	195	198	201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Conductance	±4.4	±4.6	±4.6	±3.8	±4.2	±4.8	±3.2	±3.0	±3.8	±4.8	±4.9	±4.8
Nitrate(mg/L) 0.039 0.042 0.046 0.052 0.058 0.069 ± 0.06 ± 0.02 ± 0.03 ± 0.04 ± 0.04 ± 0.02 Phosphate 0.14 0.15 0.17 0.16 0.17 0.17 $t_{mo/T}$ ± 0.03 ± 0.04 ± 0.03 ± 0.03 ± 0.03		(mS)							_					
± 0.06 ± 0.02 ± 0.03 ± 0.04 ± 0.04 ± 0.02 Phosphate 0.14 0.15 0.17 0.16 0.18 0.17 $t_{med}T$ ± 0.03 ± 0.04 ± 0.03 ± 0.03 ± 0.03 ± 0.03	10	Nitrate(mg/L)	0.039	0.042	0.046	0.052	0.058	0.069	0.063	0.062	0.064	0.061	0.059	0.046
Phosphate 0.14 0.15 0.17 0.16 0.18 0.17 (mei) $+0.08$ $+0.03$ $+0.03$ $+0.03$ $+0.03$ $+0.03$ $+0.03$ $+0.03$			±0.06	±0.02	±0.03	±0.04	±0.04	±0.02	±0.08	±0.09	±0.06	±0.06	±0.07	±0.08
+0.08 +0.03 +0.04 +0.03 +0.003 +0.003		Phosphate	0.14	0.15	0.17	0.16	0.18	0.17	0.16	0.15	0.16	0.14	0.15	0.13
		(mg/L)	± 0.08	±0.03	±0.04	±0.02	± 0.003	±0.003	± 0.002	± 0.01	±0.02	±0.08	±0.09	±05

Table 2. Physicochemical properties of river Ganga at Shiwala Ghat (Avg. of two years i.e. Jan 2006-2008)

																							-		
Dec.	22.1	±1.2	8.2	±0.4	57.0	± 1.6	281	± 4.1	8.9	± 0.2	4.2	±2.6		7.0	±3.6		11.2	±3.2	320	± 8.2		0.046	±0.04	0.064	±0.3
Nov.	25.2	± 1.5	8.0	±0.4	58.1	± 1.3	265	± 4.2	8.2	± 0.2	4.8	± 2.9		8.8	±3.2		10.4	±3.0	263	±6.9		0.051	±0.04	0.064	± 0.1
Oct.	29.6	± 1.2	7.9	±0.3	225	± 1.5	267	±3.8	6''	土0.4	5.1	± 2.5		6.3	±3.0		10.2	± 1.7	539	± 5.5		0.062	±0.07	0.100	±0.2
Sept.	31.4	±1.6	7.6	土0.4	55.8	± 1.2	301	±3.6	8.4	±0.2	5.4	±2.8		10.7	±3.6		9.1	± 1.9	220	± 5.3		0.072	±0.09	0.152	±0.4
Aug.	31.6	±1.4	7.8	± 0.5	66.3	± 1.3	867	± 2.4	8.6	± 0.3	6.0	± 2.1		11.0	±3.2		9.4	± 1.3	186	±4.7		0.082	±0.08	0.212	±0.3
July	30.1	±1.3	7.7	± 0.1	62.2	± 1.3	287	± 2.8	8.2	± 0.2	6.4	±3.4		11.8	± 3.1		8.2	± 1.2	185	± 5.2		0.094	±0.07	0.298	±0.02
June	32.2	±1.4	7.5	± 0.3	55.8	± 1.6	260	± 3.8	7.6	± 0.1	6.5	±3.7		12.6	±3.6		8.9	± 3.1	199	± 7.1		0.100	±0.04	0.392	±0.05
May	30.1	±1.6	7.9	±0.9	57.4	± 1.9	270	± 3.7	8.3	± 0.1	3.8	±3.7		6.9	±3.4		9.4	± 1.9	190	± 6.1		0.092	±0.09	0.300	±0.03
April	26.4	±1.8	8.3	±0.6	55.9	± 1.8	283	± 3.9	8.6	± 0.4	3.0	±3.3		8.2	± 3.2		10.9	± 2.0	210	±5,9		0.088	±0.04	0.220	± 0.001
Mar	27.8	±1.6	8.2	± 0.5	61.8	±2.3	270	±3.5	9.1	± 0.3	2.4	±3.3		7.9	±2.5		11.6	± 2.1	289	±6.3		0.069	±0.07	0.129	±0.004
Feb	22.6	± 1.2	8.4	± 0.2	61.10	±2.8	266	± 3.2	9.5	±0.8	2.2	±3.5		7.2	± 4.1		12.4	± 1.7	300	±6.6		0.035	±0.6	0.010	±0.4
Jan	20.1	±1.4	8.6	±0.3	55.9	±2.5	305	±3.4	9.8	± 0.2	1.9	±3.2		5.9	±4.2		11.9	± 1.4	380	±6.2		0.015	±.04	0.005	±0.3
Parameter	Temperature (⁰ C)		pH		Acidity(CaCo ₃	mg/L)	Alkalinity(CaCO ₃	mg/L}	Dissolved	Oxygen (mg/L)	Biochemical	Oxygen.	Demand (mg/L)	Chemical	Oxygen demand	(mg/L)	Chloride(mg/L)		Electrical	Conductance	(mS)	Nitrate(mg/L)		Phosphate (mg/L)	
S. No.	1		2		3		4		5		9			7			8		6			10		11	

Dec.	22.3	± 1.4	8.4	+1	9.2	±2.4	277	5.4	4.8	±0.4	42.2	3.1		82.2	± 3.3		47.4	±1.7	380	±7.8	0.234	0.09	0.432	
Д	5	++	~			++	2	++	7	++	4	+1		8	H		4	H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+1	0.) H	0	
Nov.	24.2	± 1.1	8.3	±0.90.7	64.6	± 2.5	270	±4.3	4.4	±0.2	44.2	±2.6		90.2	± 3.6		46.5	±1.8	360	±5.7	0.264	±0.07	0.492	
Oct.	25.4	± 1.8	8.2	±0.6	69.69	± 1.8	276	± 4.1	3.9	± 0.1	47.4	±2.7		92.3	± 3.1		39.2	± 1.5	330	±6.4	0.276	±0.06	0.542	
Sept.	28.4	± 1.6	7.9	± 0.5	66.1	± 2.2	275	±3.7	3.8	±0.4	48.6	±2.9		96.4	± 3.7		36.5	± 1.8	292	± 1.2	0.296	±009	0.613	
Aug.	30.5	± 1.7	7.8	±0.4	64.6	± 2.1	274	± 2.8	3.6	± 0.2	49.7	± 2.1		97.6	± 3.2		33.5	±1.6	240	±5.4	0.312	±0.8	0.654	
July	31.6	± 1.9	7.6	± 0.5	63.2	± 2.7	272	± 2.2	3.4	±0.3	51.6	±2.8		99.4	±4.8		32.1	± 1.3	230	±6.4	0.332	±0.9	0.706	
June	32.4	± 1.8	7.3	±0.7	66.2	±3.2	269	± 4.1	3.2	±0.2	53.5	±3.0		100.6	±5.1		33.6	±1.6	264	±7.9	0.379	±0.05	0.714	
May	27.6	± 1.9	7.5	±0.6	63.2	±1.9	270	±3.6	4.1	± 0.1	49.8	±2.6		98.9	土4.6		36.4	± 1.8	352	±7.8	0.320	±0.04	0.624	
April	25.4	± 1.7	7.9	±0.9	619	± 2.2	273	± 4.1	4.6	±0.2	47.6	±2.9		96.5	土4.4		39.3	± 1.7	372	±7.5	0.296	±0.5	0.512	
Mar	23.6	± 1.5	8.2	±0.8	59.6	± 2.5	274	±3.5	4.9	±0.6	44.6	±3.1		89.4	土4.0		42.4	±2.5	396	±8.1	0.199	±0.5	0.472	
Feb	22.4	± 1.3	8.3	±0.4	60.7	± 1.8	276	±3.2	5.0	±0.5	43.4	±3.3		82.6	土4.1		47.4	±2.8	403	±8.2	0.191	±0.2	0.452	
Jan	21.3	± 1.2	8.5	±0.7	59.6	± 1.5	278	±3.8	5.3	±0.7	41.2	± 3.1		79.2	±4.4		46.5	± 2.1	412	±8.3	0.178	±0.4	0.412	-
Parameter	Temperature (⁰ C)		PH		Acidity(CaCo ₃	mg/L)	Alkalinity(CaCO ₃	mg/L}	Dissolved	Oxygen (mg/L)	Biochemical	Oxygen.	Demand (mg/L)	Chemical	Oxygen demand	(mg/L)	Chloride(mg/L)		Electrical	Conductance (μS)	Nitrate(mg/L)		Phosphate (mg/L)	
S. No.	1		2		æ		4		5		9			7			8		6		10		11	-

Table 4. Physicochemical properties of river Ganga at Chauki Ghat (Avg. of two years i.e. Jan 2006-2008)

Parameter	Jan	Feb	Mar	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Temperature (^{°C})	21.0	22.3	26.3	28.9	32.5	33.7	30.2	28.6	29.2	24.8	23.2	21.6
	± 1.2	± 1.4	± 1.3	±1.6	± 1.8	± 1.9	± 1.8	± 1.6	± 1.7	± 1.5	± 1.3	± 1.8
	7.9	7.6	7.5	7.2	7.3	7.0	1.7	7.3	7.2	7.1	7.4	7.6
	±0.6	±0.7	±0.4	±0.6	±0.4	±0.6	±0.9	± 0.5	± 0.5	±0.4	±0.3	±0.6
Acidity(CaCo ₃	57.0	63.2	62.2	57.8	59.4	67.3	63.2	61.2	60.0	58.6	58.0	57.9
_	±2.4	±2.3	± 2.1	±1.9	± 2.5	±2.7	± 2.2	±1.9	± 2.1	± 1.6	± 1.4	±2.7
Alkalinity(CaCO ₃	302	270	267	276	240	204	236	254	267	272	282	294
	±3.8	±3.5	±3.4	±4.2	±3.7	± 4.1	±2.9	± 2.1	±3.7	±3.9	± 4.1	±4.9
	9.7	9.2	9.0	8.4	8.1	7.4	8.0	8.4	8.2	7.6	8.0	8.4
Oxygen (mg/L)	± 1.6	± 1.3	± 1.4	± 1.6	± 1.7	± 1.4	± 1.7	± 1.3	± 1.5	± 1.3	± 1.8	± 1.6
Biochemical	22.1	23.6	24.4	27.2	29.6	33.7	32.1	30.6	29.6	27.1	26.4	22.1
_	±3.2	± 3.1	±2.9	±2.8	± 2.9	± 1.9	± 2.1	± 2.1	± 2.7	± 2.1	± 2.7	± 2.5
Demand (mg/L)												
	54.6	62.1	63.4	70.2	79.1	102.1	98.2	80.1	74.2	71.6	68.1	60.6
Oxygen demand	± 4.1	±4.2	±3.9	±3.8	±4.0	±4.8	±4.1	±3.9	±2.7	±3.9	±3.8	±3.4
Chloride(mg/L)	12.9	17.8	20.3	26.4	30.6	32.1	30.1	28.2	27.4	26.3	22.1	16.6
	±0.8	±0.7	±0.4	±0.6	主0.6	± 1.1	±0.8	±0.7	±0.9	± 1.4	± 1.4	± 1.8
	432	406	384	376	363	372	360	370	389	400	406	416
Conductance	±7.2	±7.4	± 7.1	± 5.2	± 7.1	±7.3	±5.3	±5.9	±5.5	± 5.1	±6.3	±7.9
Nitrate(mg/L)	0.076	0.082	0.086	0.094	0.100	0.137	0.110	0.098	0.91	0.85	0.070	0.72
	±0.03	±0.04	±0.06	±0.08	±0.03	±0.04	±0.07	± 0.02	±0.04	±0.03	± 0.02	±0.04
Phosphate (mg/L)	0.13	0.24	0.29	0.37	0.49	0.76	0.63	0.60	0.52	0.44	0.29	0.28
	±0.4	±0.2	±0.6	±0.2	± 0.5	±0.3	±0.6	±0.4	±0.6	±0.6	±0.7	±0.8

829

Table 5. Physicochemical properties of river Ganga at Rajendra Prasad Ghat (Avg. of two years i.e. Jan 2006-2008)

S. No.	Parameter	Jan	Feb	Mar	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1	Temperature (⁰ C)	21.2	23.4	25.9	26.7	29.4	32.0	31.6	31.5	29.8	24.3	23.3	23.0
		± 1.2	± 1.5	± 1.3	±0.9	± 1.1	± 0.4	±0.6	±0.8	±0.8	± 1.0	± 1.2	± 1.1
2	Hd	8.6	8.3	8.1	8.0	7.7	7.4	7.7	7.9	8.3	8.1	8.2	8.4
		±0.3	± 0.1	± 0.1	± 0.2	± 0.2	±0.6	± 0.2	± 0.2	± 0.1	±0.2	± 0.1	± 0.2
3	Acidity(CaCo ₃	54.3	57.6	60.1	62.2	64.2	67.4	64.6	63.2	61.6	59.6	57.4	57.6
	mg/L)	± 1.2	± 1.9	± 1.9	± 2.4	± 2.0	± 2.1	± 2.0	± 2.4	± 2.2	±2.0	± 2.6	±2.8
4	Alkalinity(CaCO ₃	279	276	274	275	272	270	274	276	278	276	275	272
	mg/L)	±3.8	± 3.1	± 3.2	±4.9	± 5.0	±4.8	±2.9	±2.7	±3.8	± 4.2	± 4.1	±4.9
5	Dissolved	5.6	5.4	5.3	5.0	5.7	3.4	3.6	3.9	4.2	4.8	4.9	5.2
	Oxygen (mg/L)	±0.8	±0.7	±0.6	± 0.3	±0.2	±0.2	土0.4	±0.6	±0.8	±0.7	±0.9	土0.6
9	Biochemical	52.4	54.6	56.3	58.4	64.6	67.5	65.6	64.3	62.6	59.8	57.8	55.6
	Oxygen.	± 3.2	±3.0	±3.5	±3.7	±3.9	±4.0	±3.0	±3.2	± 3.1	±2.9	±3.6	± 3.2
	Demand (mg/L)												
7	Chemical	9.66	110	122.6	129.6	132.6	133.6	126.6	129.4	120.4	111.6	110.8	0.06
	Oxygen demand	±4.6	±3.2	±3.0	±2.9	±4.2	±4.4	± 3.0	±3.0	±4.2	±4.7	± 4.8	±4.0
	(mg/L)												
8	Chloride(mg/L)	65.7	66.7	64.5	59.7	52.4	48.2	46.3	41.6	46.3	48.2	52.4	66.7
		±0.6	±0.8	±0.8	±0.9	±0.6	± 1.0	± 0.4	±0.4	±0.6	± 0.5	±0.7	±0.9
6	Electrical	542	539	528	482	464	444	438	454	486	496	510	522
	Conductance	±8.0	±8.8	±9.0	±8.9	±8.6	±8.9	± 7.1	±6.0	±3.0	±5.2	±6.0	± 7.1
	(ηS)												
10	Nitrate(mg/L)	0.452	0.478	0.520	0.590	0.650	0.762	0.716	0.687	0.664	0.610	0.590	0.580
		±0.06	±0.04	± 0.02	± 0.05	± 0.04	± 0.01	±0.06	±0.09	± 0.080	±0.07	±0.04	± 0.05
11	Phosphate (mg/L)	0.815	0.835	0.849	0.856	0.962	1.00	0.945	0.912	0.900	0.879	0.832	0.800
		±0.4	±0.3	±0.2	± 0.1	± 0.10	±0.08	±0.07	±0.02	±0.03	±0.04	±0.03	±0.02

Table 6. Physicochemical properties of river Ganga at Raj Ghat (Avg. of two years i.e. Jan 2006-2008)

3 A P]						`			.SnU		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
	Temperature (⁰ C)	22.1	23.2	25.1	27.3	29.2	33.8	32.9	31.7	29.6	24.2	23.9	23.4
		± 1.3	± 1.6	± 1.5	± 1.4	±1.9	± 1.4	± 1.1	± 1.0	± 1.3	± 1.2	± 1.1	± 1.3
	Hd	8.8	8.6	8.5	8.4	8.0	7.8	7.9	8.1	8.3	8.4	8.6	8.7
		±0.6	±0.8	±0.9	±0.8	±0.4	±0.3	± 0.2	± 0.1	± 0.3	±0.4	± 0.5	±0.6
'n	Acidity(CaCo ₃	57.6	59.2	62.4	65.6	67.9	69.3	68.3	66.0	64.6	63.4	62.1	60.2
**	mg/L)	± 2.1	± 2.0	± 1.5	± 1.3	±2.6	±2.7	± 2.5	± 1.8	± 1.7	± 1.5	±0.9	±2.8
4 A	Alkalinity(CaCO ₃	310	300	263	257	260	269	273	281	287	291	299	305
п	mg/L)	±3.7	± 3.5	± 3.6	±3.9	± 2.3	± 2.4	±3.4	± 3.5	± 3.6	± 3.5	± 3.3	±3.9
5 D	Dissolved	6.7	6.1	4.7	3.9	3.1	2.5	2.9	3.4	3.9	4.2	4.6	5.2
0	Oxygen (mg/L)	±0.7	土0.4	±0.2	± 0.2	± 0.3	± 0.1	± 0.1	±0.2	± 0.3	±0.2	±0.4	± 0.1
6 B	Biological	66.2	72.1	82.4	85.7	86.9	87.5	85.7	84.2	81.2	76.2	60.2	65.1
0	Oxygen.	±3.4	±3.8	±2.9	±2.5	±2.6	±2.9	±3.1	± 2.1	±2.3	± 2.1	±3.0	±2.9
I	Demand (mg/L)												
7 C	Chemical	131.2	136.4	142.1	147.6	159.6	`170.5	167.2	161.4	157.4	152.3	149.4	139.2
0.3	Oxygen demand	± 4.1	±4.4	$\pm.4.7$	±.3.8	±3.5	±4.4	±4.2	±2.5	±2.6	± 3.3	±4.2	±4.5
	(mg/r)	,											
0 8	Chloride(mg/L)	80.1	81.5	76.4	71.9	70.4	60.9	64.6	71.2	74.3	76.2	77.8	79.6
		±0.6	±0.7	±0.3	± 1.4	± 1.7	±2.0	± 1.9	± 1.8	± 1.7	± 1.6	± 1.4	± 1.8
9 E	Electrical	843	832	822	800	763	668	642	660	692	700	729	794
0	Conductance	± 8.4	±8.3	±7.9	±5.3	±7.5	±8.9	±6.9	±5.7	±5.3	±7.4	±8.5	±9.0
Ĵ	(mS)												
10 N	Nitrate(mg/L)	0.782	0.810	0.870	0.910	0.979	0.985	0.964	0.956	0.942	0.876	0.846	0.710
		±0.09	±0.07	±0.07	± 0.04	± 0.04	± 0.03	±0.4	±0.6	± 0.5	± 0.03	± 0.01	±0.02
11 P.	Phosphate (mg/L)	1.01	1.14	1.20	1.29	1.37	1.58	1.46	1.42	1.31	1.22	1.10	1.07
		± 0.3	±0.7	±0.4	± 0.2	±0.6	±0.7	土0.4	± 0.5	± 0.3	± 0.2	± 0.2	± 0.5

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2010 International Energy & Environment Foundation. All rights reserved.

4. Conclusion

From the observation made during present study it may be concluded that Raj Ghat site was found polluted whereas, Shiwala Ghat site was found least polluted.

References

- [1] Shukla S.C, Kent R and Tripathi B.D. (1989) Ecological investigation on physico-chemical characteristics and phytoplankton productivity of river Ganga at Varanasi Geobios 16; 20-27.
- [2] Singh G.S.Singh A.S (1994), variation and Correlation of Dissolved oxygen with effluent quantity and stage of river Ganga at Varanasi (India) Journal Environment .Health 36(2); 79-83.
- [3] Singh B.B. (1995), Pollution status of Rapti River at Gorakhpur Journal of Environment and pollution 2(3); 117-120.
- [4] Saxena K.K, Chauhan R.R.S (1993) Physico chemical aspects of pollution in the river Yamuna at Agra Pollution Res.12 (2); 101-104.
- [5] Sahu B.K., Rao R.J.and Behra (1995) Studies of some physico-chemical characteristic of the Ganga River (Rishikesh –Kanpur) within twenty four hours during winter 1994 .Ecol.Env.and cons 1(1-4); 35 38.
- [6] Cole, g.a. 1979 A Text Book of Limnology 2nd edition. The e.v. Mosley co. London.
- [7] APHA-AWWA WPCR 1998 Standard methods for examination of water waste water 19th edition APHA, Washington, U.S.A.
- [8] Bilgrami, K.S. And Datta Munshi, J.S.1979. Limnological Survey and impact of human activities on the river Ganga (Barauni to Farakka).
- [9] Bilgrami, K.S. AND Datta Munshi, J.S. 1985 Ecology of river Ganga Impact of human activities and conservation of aquatic biota (Patna to Farakka) Allied press, Bhagalpur India.
- [10] David, A and Roy 1966. Studies on the pollution of the river Daha (N.Bihar) by sugar and distillery wastes, Environment Hlth .8(1); 6-35.
- [11] Gupta, S.C, Rathore G.S. and Mathur, G.C.D. (2001) Hydro –Chemistry of udaipur Lakes Indian Journal Of Environment and Health, 43(1), PP.38-44.
- [12] Klein L.1973 River Pollution 2 Cause and effects of (5 th Imp). Butterworth and co. Ltd.
- [13] Pandey, B.N, Lal, R.N, Mishra .P.K and Jha, A.K.1992 Seasonal rhythm in the physio –chemical properties of the river Maharashtra, Bihar, Env and Eco.10 (2); 354-357.
- [14] Shardendu and Ambasht, R.S. (1990) Variation in the physio –chemical characteristic of a city pond Ecosystem at Varanasi Bio Journal 2(1); 11-18.
- [15] Shaji c; Patel R.J. (1991) Chemical and biological evaluation of pollution in the river Sabarmati At Ahmedabad, Gujarat. Phycos 30 (192); 9100.
- [16] Singh D.K.and Singh C.P.1990. An assessment of water quality of river Suber Harekha (Bihar) Geobios 17; 171-175.
- [17] Tripathi P.K and AHIKARY S.P. (1990), Preliminary Study on water pollution of river Nadira Indian J. Env. Hlth. 32(4); 363 -386.
- [18] Throat ,S.R. and Masarrat Sultana ,(2000) pollution status of Salim Ali Lake ,Aurangabad (M.S.) Journal of pollution Research 19(2), PP. 307=309.
- [19] Yogesh Shastri and Pendre, D.C (2001) Hydrobiological study of Dahikhuna reservoir Journal of Environmental Biology 22 (1), PP.67-70.

Singh Namrata is a research scholar at the department of Zoology, Harish Chandra post Graduate college, Varanasi, India.

E-mail address: singhnamrata82@gmail.com