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Abstract 
The stochastic finite-time H∞ control problem is considered for a class of linear uncertain 
Markov jump systems that possess randomly jumping parameters. The transition of the jumping 
parameters is governed by a finite-state Markov process. A sufficient condition is provided to 
solve the above finite-time control problem and a stochastic finite-time H∞ controller such that 
the resulting closed-loop system is stochastic finite-time boundedness  and stochastic finite-time 
stabilization and has the disturbance attenuation γ  for all admissible uncertainties. The control 
criterion is formulated in the form of linear matrix inequalities and the designed finite-time 
stabilization controller is described as an optimization one. Simulation results illustrate the 
effectiveness of the developed approaches. 
Copyright © 2010 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
A lot of dynamical systems are highly relevant to processes whose parameters are subject to random 
abrupt changes due to, for example, sudden environment changes, subsystem switching, system noises, 
failures occurred in components or interconnections and executor faults, etc. As a special kind of hybrid 
systems with two components which are the mode and the state, Markov jump systems (MJSs) may be 
employed to model the above phenomena. In MJSs, the dynamics of jump modes and continuous states 
are respectively modeled by finite state Markov chains and differential equations. Since the pioneering 
work of Krasovskii and Lidskii on quadratic control [1] in the mid 1960s, MJSs has regained increasing 
interest owing to the arising subject on the study of hybrid systems which involve both time-evolving 
and event-driven mechanisms. In fact, the applications of these hybrid systems are more comprehensive, 
for instance, economic systems [2], solar thermal receiver systems [3], communication systems [4], 
electrical power systems [5], robot manipulator system [6] and circuit systems [7, 8], etc. In the past 
decades, the characterization of stochastic Lyapunov stability and control issues of MJSs has been widely 
investigated, and it is worth noticing that Rami and Ghaoui [9] started a new and prolific trend in the area 
of using LMIs. For more results on this topic, we refer readers to [1-14] and the references therein. 
As we all know, most of the results relate to the robust Lyapunov stability and performance criteria of 
linear systems over an infinite-time interval and it always deals with the asymptotic property of system 
trajectories. But in some practical processes, the main attention is the behavior of the control dynamics 
over a fixed finite-time interval. That is because a Lyapunov asymptotically stable system over an 
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infinite-time interval does not mean that it has good transient characteristics, for instance, biochemistry 
reaction system, robot control system and communication network system, etc. Therefore, we need to 
check the unacceptable values to see whether the system states remain within the prescribed bound in a 
fixed finite-time interval.  
Lyapunov stability deals with asymptotic pattern of system trajectories by concerning the steady-state 
behavior of control dynamics over an infinite-time interval. But in many practical applications, For 
example, large values of the state are not acceptable in the presence of saturations [11]. In these cases, 
we need to check the unacceptable values that the system state remains within prescribed bounds in the 
fixed finite-time interval by giving some initial conditions. To study these transient performances of 
control dynamics, Dorato [15] gave the concept of finite-time stability (or short-time stability) in the 
early 1960s. A system is said to be finite-time stable if, its state does not exceed a certain threshold for 
the given bound initial condition during a fixed finite-time interval. Then, some attempts on finite-time 
stability can be found in [16, 17]. For more results on this topic, we refer readers to [15-23] and the 
references therein. Towards each case above, it is worth noticing that Doroto et. al [17] started a new and 
prolific trend in the area of using linear matrix inequalities (LMIs) [23] techniques. However, more 
details are related to linear control dynamic systems, and very few literatures consider finite-time interval 
problem for Markov switching stochastic systems. In the work of [22], Yang et. al made some attempt to 
the finite-time stability and stabilization of impulsive Markov switching systems. But parameters 
uncertainties are not included and the feedback controller is designed based on the state partition of 
continuous parts of systems. 
In this paper, we discuss the stochastic finite-time H∞ control problem of continuous-time MJSs with 
uncertain parameters and norm bounded external disturbance. We aim at the dynamics of the uncertain 
MJSs of each system mode is stochastically finite-time stable and finite-time stabilizable via state 
feedback for all admissible uncertainties and has the disturbance attenuation γ  for all admissible 
uncertainties. By selecting the appropriate Lyapunov-Krasovskii functions, it gives the sufficient 
conditions that the stochastic finite-time boundedness and finite-time stabilization problems can be 
tackled in the form of LMIs and the designed finite-time stabilization controller is described as an 
optimization one. At last, a numerical example is provided to illustrate the proposed results. 
In the sequel, the following notion will be used: nR  and mnR ×  denote n -dimensional Euclidean space, 
and the set of all the mn×  real matrices, TA (or Tx ) and 1−A denote the transpose and the inverse of 
matrix A or vector x , ( )Amaxσ and ( )Aminσ denote the maximal and minimal eigenvalue of a real 

matrix A , A  denotes the Euclidean norm of matrix A , { }E ∗  denotes the mathematics statistical 

expectation of the stochastic process or vector, [ ]02 dLn −  is the space of n -dimensional square 
integrable function vector over [ ]0d− ,  0>P  stands for a positive-definite matrix, I  is the unit 
matrix with appropriate dimensions. 
 
2. System description 
Let us first consider an energy-storing electrical circuit illustrated by Figure 1. In this model, we assume 
that the position of the switch follows a continuous-time Markov process { },tr with three states, 

[ ]1 2 3M = . This Markov process is the consequence of a random request that may result from the 

choice of an operator. The energy-storing elements in this circuit are the capacitor 1C , 2C , 3C  and the 
inductor L . 1tr =  means that the system goes with the circuit loop of  capacitor 1C , and it is similar as 

2tr =  and 3tr = . The switching between these three states is described by the following probability 
transitions, 
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where 0>∆t and ( ) 0/lim
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tt
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ο . 0≥ijπ is the transition probability rates from mode i  at time t to 
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Assuming the capacitor 1C , 2C , 3C  and the inductor L  are linear and time invariant, we can model 

them as ( ) c
t C

dva r i
dt

=  and L
L

div L
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= , where where i  and v  are the current through and the voltage 

across an element, with the subscript specifying the element with ( )ta r  satisfies 
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Let us take ( ) ( )1 Cx t v t=  and ( ) ( )2 Lx t i t=  as the state variables u E=  as the excitation and 

( ) ( ) 0.5Cz t v t E= +  as the output, and use the basic electrical circuits laws, then we get 
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Figure 1. Energy-storing electrical circuit 
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We will study the above system in the following section. Without loss of generality, we first consider the 
following MJSs with general form,  
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where ( ) nRt ∈x  is the state, ( ) lRt ∈z  is the controlled output, ( ) mRt ∈u is the controlled input, 
( ) [ )∞+∈ 02

pLtd is the external disturbances, 00 ,rx  respectively represent the initial state and initial 
mode, ( )trA , ( )trB , ( )td rB , ( )trC , ( )trD , ( )td rD are known mode-dependent constant matrices with 
appropriate dimensions. For notational simplicity, when it =r , M∈i , ( )trA , ( )tt ,rA∆ , ( )trB , 

( )tt ,rB∆ , ( )td rB , ( )trC , ( )trD , ( )td rD are respectively denoted as iA , iA∆ , iB , iB∆ , diB , iC , iD , 

diD . iA∆  and iB∆  are the time-varying but norm bounded uncertainties satisfying 
 
[ ] ( )[ ]iiiiii NNFMBA 21t=∆∆                                                                                                         (6) 
 
where iM , iN1 , iN 2 are known mode-dependent matrices with appropriate dimensions and ( )tiF  is the 
time-varying unknown matrix function with Lebesgue norm measurable elements satisfying 

( ) ( ) IFF ≤tt ii
T . 

 
Remark 1. The parameter uncertainties iA∆  and iB∆  are said to be admissible if both condition (6) 

and ( ) ( ) IFF ≤tt ii
T hold. The matrix iM ( )M∈∀i  is chosen as full row rank matrix. The motivation for 

us to consider MJSs (5) containing uncertainties iA∆  and iB∆  stems from the fact that, it is always 
impossible to obtain the exact mathematical model of a practical dynamics due to the complexity 
process, the environmental noises, time-varying parameters and the difficulties if measuring various and 
uncertain parameters, etc. Thus, the model of a practical dynamic to be controlled almost contains some 
types of uncertainties. In fact, the uncertainties described in (6) have been widely used in the schemes of 
stochastic robust H∞ control and stochastic robust filtering of uncertain MJSs.  For more results on this 
topic, we refer readers to [5-8, 14, 17, 18] and the references therein.. Note that the unknown mode-
dependent matrix ( )tiF  in (6) can also be allowed to be state-dependent, i.e., ( ) ( )( )ttt ii xFF ,= , as long 

as ( )( ) 1, ≤tti xF  is satisfied. 
 
Assumption 1. The external disturbance ( )td  is time-varying and satisfies the following constraint 
condition 
 

( ) ( ) 0,
0

T ≥≤∫ dddttt
T

dd                                                                                                                         (7) 

 
Concerning MJSs (5), we construct the following state-feedback controller: 
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( ) ( )tt i xKu =                                                                                                                                             (8) 
where iK is state feedback gain to be designed. Then, the resulting closed-loop MJSs follows that 
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where iiii KBAA += , iiii KBAA ∆+∆=∆ , iiii KDCC += . 
The aim of this paper is to analyze the finite-time control problem of uncertain continuous-time MJSs 
(5). By using the stochastic Lyapunov-Krasovskii functional method, the main results will be given in the 
form of LMIs. In the work of [15-22], the following definitions over a finite-time interval for some given 
initial conditions can be formalized. 
 
Definition 1. MJSs (5) with ( ) 0=tu , ( ) 0=tw  is stochastically finite-time stable (FTS) with respect to 

( )1 2 ic c T R , where 0iR > , 21 cc < , if for a given time-constant 0>T , the following relation 
holds. 
 

{ } ( ) ( ){ } [ ]T T
0 0 1 2 , 0i iE x R x c E x t R x t c t T≤ ⇒ < ∀ ∈                                                             (10) 

                                                                 
Definition 2. MJSs (5) with ( ) 0=tu is stochastically finite-time bounded (FTB) with respect to 

( )1 2 ic c T R , where 0iR > , 21 cc < , if for a given time-constant  0>T , condition (10) holds. 
 
Definition 3. (Stochastic finite-time stabilization via state feedback). Given a time-constant 0>T , 
positive scalars 21, cc , 21 cc < , and mode-dependent positive definite matrix 0iR > , MJSs (5) exists a 
state feedback controller in form (8), such that the closed-loop system (9) is stochastically FTB with 
respect to ( )1 2 ic c T R d . 
 
Remark 2. It is necessary to point out that there is a great difference between Lyapunov stochastic 
stability and stochastic finite-time stability. The concept of Lyapunov stochastic stability (or Lyapunov 
almost asymptotic stability [7]) is largely known to the control community, but a stochastic MJSs is FTS 
if, once we fix a finite time-interval, its state does not exceeds some bounds during this time-interval. 
Moreover, a MJSs system which is stochastic FTS may not be Lyapunov stochastic stable; conversely, a 
Lyapunov stochastic stable MJSs could not be FTS if its states exceed the prescribed bounds during the 
transients. For linear systems with Markov jump, the mode jumping is included and it will influence the 
designing of FTS controller. A key assumption in definition 1-3 is the initial jump instants are known in 
advance. The concept of FTS also differs from invariant set, which pays more attention to the control 
properties in an infinite time-interval. The definition of FTS can be interpreted in terms of ellipsoidal 
domains. The set defined by { }T

0 0 1iE x R x c≤  contains all the admissible initial states. Instead, the 

inequality ( ) ( ){ }T
2iE x t R x t c<  defines a time-varying ellipsoid which bounds the state trajectory over 

the finite-time interval [ ]Tt 0∈ . 
 
Remark 3. If there is no external disturbances in system (2), i.e., 0d = , then  finite-time boundedness 
can be recovered as finite-time stability. In the presence of external disturbances, finite-time stability 
leads to the concept of finite-time boundedness. That is to say, a system is FTB if, given a bound initial 
condition and a characterization of the set of admissible inputs, the system states remain below the 
prescribed limit for all inputs in the bound set. FTB and FTS are open-loop concepts. But stochastic 
finite-time control problem concerns the design of a stochastic finite-time controller which guarantees 
the stochastic finite-time boundedness and finite-time stabilization of closed-loop system via state 
feedback. 
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Definition 4. (Mao [11]) In the Euclidean space{ }+×× RRn M , we introduce the stochastic Lyapunov-
Krasovskii function of uncertain continuous-time MJSs (2) as ( )( )0,, >= tit trxV , the weak 
infinitesimal operator of which satisfies 
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Definition 5. For MJSs (5) and (9), if there exist a state-feedback controller in form (8), such that the 
resulting closed-loop dynamic MJSs (9) is stochastically FTB and under the zero-valued initial condition, 
the system output satisfies the following cost function inequality for  0>T  with attenuation 0>γ  and 
for all admissible ( )td  with constraint condition (7), 
 

( ) ( ){ } ( ) ( ) 0
0

T2

0

T <−= ∫∫
TT

dtttdtttEJ ddzz γ                                                                                         (12) 

 
Then the state-feedback controller (8) is called as the robust stochastic finite-time H∞ controller of 
closed-loop dynamic MJSs (9) with γ –disturbance attenuation. 
 
Remark 4. In the design of robust stochastic finite-time H∞ controller, the unknown disturbance ( )td  is 
assumed to be arbitrary deterministic signal of bounded energy, and the problem of this paper is to 
design a controller that guarantees a prescribed bounded for the finite-time interval induced L2 norm of 
the operator from unknown disturbance ( )td  to system output ( )tz , i. e., the designed robust stochastic 
finite-time H∞ controller is supposed to satisfy relation (9) with disturbance attenuation level γ . 
 
3. Robust stochastic finite-time H∞ control for uncertain continuous-time MJSs 
In this section, we will first consider the robust stochastic finite-time H∞ control problem for uncertain 
continuous-time MJSs (5). Before proceeding with the study, the following lemmas presented will be 
useful. 
 
Lemma 1. (Wang et. al [24]) LetT , M , F  and N be real matrices of appropriate dimension with 

IFF ≤T , then for a positive scalar 0>α , such that 
 

NNMMTMFNMFNT T1TTTT −++≤++ αα                                                                             (13) 
 
Lemma 2. For given time-constant 0>T , the uncertain continuous-time MJSs (5) is stochastic finite-
time stabilization via state feedback with respect to ( )dTcc iR21 , if there exist positive 

constant 0>α , mode-dependent symmetric positive-definite matrix nn
i R ×∈P , M∈i , symmetric 

positive-definite matrix ppR ×∈Q , such that 
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where ( ) ( ) ij

N

jiiiiiii PPΣAAPPAAΞ ij απ −+∆++∆+=
=1

T
, ( )iiP P

M

~max maxσσ
∈

= , ( )Qmaxσσ =Q , 

( )iip P
M

~min minσσ
∈

= , 2121~ −−= ii RPRP ii . 

 
Proof: For the given mode-dependent symmetric positive-definite matrix iP ( )M∈i , we define the 

following Lyapunov-Krasovskii function ( )( ) ( ) ( )ttit i xPxxV T, = . Along the trajectories of system (9), 

the corresponding time derivative of ( )( ),itxV  is given by 

( )( ) ( )( ) ( ){ } ( )( )
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From condition (14), we have 

( )( ) ( )( ) ( ) ( )TV x t ,i V x t ,i d t Qd tα αℑ < +  
 
Multiplying the above inequality by te α− , we can get 

( )( ) ( ) ( )T,t te V x t i e d t Qd tα αα− −⎡ ⎤ℑ <⎣ ⎦  

 
By integrating the above inequality between 0 to t , it follows that 

( )( ) ( ) ( ) ( )T
0 0 0

, ,
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Denote 2121~ −−= ii RPRP ii , ( )iMiP P~max maxσσ

∈
= , ( )iMip P~min minσσ

∈
= , ( )Qmaxσσ =Q . Note that 

[ ]Tt 0, ∈α , we can obtain the following relation 
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On the other hand, we have 

( )( ) ( ) ( ) ( ) ( )ttttit ipi xRxxPxxV TT, σ≥=  
 
Then we can get 

( ) ( ){ } ( )1T
1T T

P Q
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p

e c d e
E x t R x t

α ασ σ

σ
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Condition (15) implies that for [ ]Tt 0∈∀ , ( ) ( ){ }T
2iE x t R x t c< . This completes the proof. 

 
Lemma 3. For given positive scalars 0, >Tα , the uncertain continuous-time MJSs (5) is said to be 
stochastic finite-time stabilization via state feedback with respect to ( )dTcc iR21 , if there exist 

positive scalar 0>γ , mode-dependent symmetric positive-definite matrix nn
i R ×∈P , M∈i , such that 
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( ) p
TT

P ceedc σ
α
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where ( )iiP P

M

~max maxσσ
∈

= , ( )Qmaxσσ =Q , ( )iip P
M

~min minσσ
∈

= , 2121~ −−= ii RPRP ii . 

 
Proof: Consider the similar Lyapunov-Krasovskii function ( )( ) ( ) ( )ttit i xPxxV T, = . Along the 
trajectories of system (9), and recall condition (13), we have 

( )( ) ( )( ) ( ) ( )2 T, ,V x t i V x t i d t d tα γℑ < +  
 
Then following the similar proof of Lemma 2, inequalities (16) (17) can be easily obtained. This 
completes the proof. 
 
Theorem 1. For given positive scalars 0, >Tα , the uncertain continuous-time MJSs (5) is stochastic 
finite-time stabilization via state feedback with respect to ( )dTcc iR21  and satisfies the cost 
function inequality (12) for all admissible ( )td  with the constraint condition (4), if there exist positive 
scalar 0>γ , mode-dependent symmetric positive-definite matrix nn

i R ×∈P , M∈i , such that 
condition (17) and the following inequality hold, 
 

  0T2T
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⎦

⎤
⎢
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didiidi

diidiiiii

DDIPB
DCBPCCΞ
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Proof: Considering Lemma 3 and the overall closed-loop dynamic MJSs (9), we introduce the following 
inequality by defining the similar Lyapunov-Krasovskii function ( )( ) ( ) ( )ttit i xPxxV T, = , 

( )( ) ( )( ) ( ) ( ) ( ) ( )2 T T, ,V x t i V x t i d t d t z t z tα γℑ < + −  
 
Obviously, the above relation can be guaranteed by condition (15). On the other hand, multiplying the 
above inequality by te α− , it follows that 
 

( )( ) ( ) ( ) ( ) ( )2 T T,t te V x t i e d t d t z t z tα α γ− −⎡ ⎤ ⎡ ⎤ℑ < −⎣ ⎦⎣ ⎦  

 
In zero initial condition, by integrating the above inequality between  0 to T , we can get 

( )( ) ( ) ( ) ( ) ( )2 T T

0
,

TT te V x t i e d t d t z t z t dtα α γ− − ⎡ ⎤< −⎣ ⎦∫  

 
Thus, the following condition holds, 

( ) ( ) ( ) ( )T 2 T

0 0

T Tt te z t z t dt e d t d t dtα αγ− −<∫ ∫  

 
Note that [ ]Tt 0∈ , then yields 

( ) ( ) ( ) ( )T 2 T

0 0

T TTz t z t dt e d t d t dtα γ<∫ ∫  

Therefore, condition (9) can be guaranteed by letting Teαγ γ= . This completes the proof. 
 
Theorem 2. For given positive scalars 0, >Tα , the uncertain continuous-time MJSs (5) is stochastic 
finite-time stabilization via state feedback with respect to  ( )dTcc iR21 , if there exist a state 

feedback controller  1−= iii XYK , and satisfies the cost function inequality (12) for all admissible ( )td  
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with the constraint condition (7), if there exists positive scalar 0>γ , mode-dependent symmetric 
positive-definite matrix nn

i R ×∈X , M∈i , mode-dependent matrix  nm
i R ×∈Y , M∈i  and a sequence 

{ }M∈> ii ,0β , such that 
 

( ) ( )

( ) ( )

0

000
000
00
00

,

T
21

T2T

T
2

TT
1

TTT

<

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+
−+

−
++

ii

iiii

diiiii

didi

iiiiiiiiidiii

XNXM
IYNXN

IDYDXC
DIB

XMNYNXDYCXBYXL

β

γ
                                     (19) 

 
11

1
−− << ii RXR iσ                                                                                                                                  (20) 

 

( ) 01

11

1

2

2 <
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−+− −−

σ
α
γ αα

c

cedce TT

                                                                                                  (21) 

 
where ( ) iiiiiiiiiiiiiiiii XMMXBYYBXAAXYXL αβπ −+++++= TTT, , 

( ) ( )[ ( ) ]iiNiiiiiiiii XXXXXM ππππ LL 111 +−= , 

( ) { }Niii XXXXXN LL 111diag +−−= . 
 
Proof: Note that inequality (18) is equivalent the following relation 
 

0T2T

T

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

IDC
DIPB
CBPΞ

S

dii

diidi

idiii

i γ  

 
In order to dealt with the uncertainties described as the form in equation (5), we can use the following 
approach 

0<∆+= iii TTS  
 
where 

( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
−

+−
=

IDKDC
DIPB

KDCBPPΛ
T

diiii

diidi

iiidiiii

i
T2T

T

γ
α

, 
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡ ∆+∆+∆+∆
=∆

00
0T

iiiiiiii
i

KBAPPKBAT  

 

in which ( ) ( ) j

N

jiiiiiiiii PΣKBAPPKBAΛ ijπ
1

T

=
++++= . 

According to Lemma 1, iT∆  can be presented as the following form 
 

12
T
12

1T
1111

T
11

TT
121211 LLLLLFLLFLT −+<+=∆ iiiii ββ  

 
where [ ]0TT

11 ii PML = , [ ]02112 iii KNNL += . 
Then we can get 



International Journal of Energy and Environment (IJEE), Volume 1, Issue 5, 2010, pp.883-896 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2010 International Energy & Environment Foundation. All rights reserved. 

892 

( )

0

00
0
0

21

T2T

T
2

TT
1

TT

<

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+
−+

−
++−+

=

IKNN
IDKDC

DIPB
NKNKDCBPPPMMPΛ

S

iiii

diiii

diidi

iiiiiidiiiiiiiii

i

β

γ
αβ

 

 
Pre- and post-multiplying the inequality 0<iS  by block-diagonal matrix { }IIIP 1−

idiag , 

letting 1−= ii PX and  iii XKY =  and applying Schur complement formula, then it leads to inequality 
(16). 
On the other hand, we denote 2121~

ii RXRP ii = , ( )iMiP P~max maxσσ
∈

= , ( )iMip P~min minσσ
∈

= . Consider 

that iP  is mode-dependent positive defined and 

( ) ( )ii

ii P
X

M
M

min
max min

1max
σ

σ
∈

∈
=  

 
It follows from condition (17) that 

( )
P

T
t

p

ceedc
σα

γ
σ

α
α 2

2
1 1

−
− <−+                                                                                                                  (22) 

 
Now we have that inequalities (22) implies 

( )iMip P~min min1 σσσ
∈

=< , ( ) 1~max max <=
∈ iMiP Pσσ . 

 
Then inequality (21) holds by putting the above conditions into inequality (22). This completes the proof. 
 
Remark 5. Theorem 2 has presented the sufficient condition of designing the stochastic finite-time 
stabilized controller for uncertain continuous-time MJSs with uncertain parameters. Note that the 
coupled LMIs (19-21) are respect to iX , iY , iβ , 1c , 2c , 1σ , 2σ , t , α , d  and  2γ . Therefore, for 

given scalars 1c , 2c , t , α and d , we can take  2γ  as optimized variable, i.e., to obtain an optimized 
finite-time stabilized controller, the attenuation lever 2γ  can be reduced to the minimum possible value 
such that LMIs (19-21) are satisfied. The optimization problem can be described as follows: 
 

( )
1 2 2X ,Y , , , ,

2

min

s. t . LMIs 19 21
i i c

with
σ σ ρ

ρ

ρ γ− =
                                                                                                        (23) 

 
Remark 6. If condition (14) is satisfied 0=α and ( ) 0=td , we can get that 

( ) ( ) 0
1

T <+∆++∆+
= j

N

jiiiiii PΣAAPPAA ijπ ,  i.e., the uncertain continuous-time MJSs (5) is 

Lyapunov stochastic stable (or almost asymptotically stable). If 0<α , then it is globally exponentially 
stochastically stable. For more results regarding to the stability analysis of this class of systems, we refer 
the reader to [5-14].By using the MATLAB LMI Toolbox [23], it is straightforward to check the 
feasibility of Theorem 2 and Remark 5. In order to illustrate the effectiveness of the developed 
techniques, we will give a numerical example about uncertain continuous-time MJSs in the following 
Section 4. 
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4. Numerical examples 
Consider the energy-storing electrical circuit illustrated by Figure 1. We assume that the circuit 
parameters are 3

1 2.0 10C Fµ= × , 3
2 1.6 10C Fµ= × , 3

3 1.0 10C Fµ= × , 0.1L H= , 

1 100R = Ω and 3
2 1 1 10R k= Ω = × Ω . Measuring time in seconds, the currents ( )2x t  in A  and 

( )u t  in V , the state model can be given by 
 

( ) ( ) ( )
( ) ( ) ( )

i i

i i

x t A x t B u t

z t C x t D u t

= +⎧⎪
⎨

= +⎪⎩

&
 (24) 

 

where 1

0.5 500
10 1000

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 2

0.625 625
10 1000

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 3

1 1000
10 1000

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 1 2 3

0
10

B B B ⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
, 

[ ]1 2 3 1 0C C C= = = , 1 2 3 0.5D D D= = = . 
 
It has been recognized that the unknown disturbances and parameter uncertainties are inherent features of 
many physical process and often encountered in engineering systems, their presences must be considered 
in realistic controller design. For these, we let 
 

⎥
⎦

⎤
⎢
⎣

⎡−
=

1.0
1.0

1dB , ⎥
⎦

⎤
⎢
⎣

⎡
=

1.0
1.0

2dB , 3

0.1
0.2dB

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, [ ]1.01 −=dD , [ ]1.02 =dD , [ ]3 0.1dD = − . 

 

And the transition rate matrix is defined by 
0.3 0.25 0.05

0.1 0.2 0.1
0.03 0.07 0.1

−⎡ ⎤
⎢ ⎥Π = −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
The uncertain parameters and mode switching is governed by a Markov chain that has the following 
transition rate matrix: 

1 2 3

0.1
0.1

M M M ⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
, [ ]11 12 13 0.1 0.1N N N= = = , 21 22 23 0N N N= = = . 

 
With the initial value for 01.=α , 5.01 =c , 2=T , 2IR =i , 4=d , 90.=τ , we solve LMIs (19-21) 
by Theorem 2 and optimization algorithm (21) and get the following optimal H∞ controller 
 

[ ]1 2.2134 1.6458K = − , [ ]2 1.2537 3.4522K = − , [ ]3 3.5859 2.9210K = − . 
 
guarantees the stochastic finite-time stabilization via state-feedback of desired close-loop 
properties with the optimization attenuation lever 0.1325γ = . 
Subsequently, to demonstrate the effectiveness of the design in case 1, we assume the unknown inputs 
are unknown white noise with noise power 0.1 over a finite-time interval  [ ]100∈t . With the initial 

condition ( ) [ ]T0 1 0.8x = , the jump mode and system states ( )tx  are shown in Figure.2-Figure.3 
respectively. It can be seen that the system is robustly finite-time stabilized by the designed robust 
stochastic finite-time controller.  
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Figure 2. The jump mode 
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Figure 3. The system state ( )tx  

 
5. Conclusions 
In this paper, the solution to the problem of stochastic finite-time H∞ control for a class of uncertain 
MJSs has been presented. The uncertain parameters are assumed to unknown, but norm bounded. By 
reconstructing the overall closed-loop dynamic system, sufficient condition has been derived such that 
the uncertain MJSs is stochastic finite-time boundedness (SFTB) and stochastic finite-time stabilization 
and satisfies the given H∞ control index. The main results are presented in the form of linear matrix 
inequalities (LMIs). Simulation example demonstrates the contribution of the main results and more 
details related to the stochastic finite-time control problem of stochastic MJSs will be studied in the 
further. 
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