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Abstract 
An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs 
and the losses of heat-resistance and internal irreversibility is established by using the theory of finite 
time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, 
two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of 
performance (COP) and profit rate of the universal heat pump cycle model are derived, respectively. By 
means of numerical calculations, heat conductance distributions between hot- and cold-side heat 
exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat 
conductance distribution and an optimal thermal capacity rate matching between the working fluid and 
heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total 
heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat 
reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. 
The results obtained herein include the optimal finite time exergoeconomic performances of 
endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, 
Atkinson, Dual, Miller and Carnot heat pump cycles. 
Copyright © 2010 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Finite time thermodynamics (FTT) [1-15] has been a powerful tool for the performance analyses and 
optimizations of various thermodynamic processes and cycles. The performance index in the analyses 
and optimizations are often pure thermodynamic parameters, which include power output, efficiency, 
entropy production rate, cooling load, heating load, coefficient of performance (COP), exergy loss, etc. 
Exergoeconomic (or thermoeconomic) analysis [16, 17] is a relatively new method that combines exergy 
with conventional concepts from long-run engineering economic optimization to evaluate and optimize 
the design and performance of energy systems. Salamon and Nitzan’s work [18] combined the 
endoreversible model in finite time thermodynamics with exergoeconomic analysis. It was termed as 
finite time exergoeconomic analysis [19-36] to distinguish it from the endoreversible analysis with pure 
thermodynamic objectives and the exergoeconomic analysis with long-run economic optimization. This 
ideal has been extended to endoreversible [19-24] and generalized irreversible [25-27] Carnot heat 
engines, refrigerators and heat pumps, universal steady flow two-heat-reservoir heat engine, refrigerator 
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and heat pump cycles [28-31], three-heat-reservoir refrigerator and heat pump cycles [32, 33], 
endoreversible and irreversible four-heat-reservoir absorption refrigerator [34], as well as endoreversible 
closed-cycle simple and regenerative gas turbine heat and power cogeneration plants [35, 36]. In 
succession, a new thermoeconomic optimization criterion, thermodynamic output rates (power, cooling 
load or heating load for heat engine, refrigerator or heat pump) per unit total cost, was put forward by 
Sahin and Kodal [37-41]. It was used to analyze and optimize the performances of endoreversible [37, 
38] and irreversible [39, 40] Carnot heat engines [37, 39], refrigerators and heat pumps [38, 40], and 
three-heat-reservoir absorption refrigerator and heat pump [41].  
Generalization and unified description of thermodynamic cycle model is an important task of FTT 
research. Finite time exergoeconomic optimization for endoreversible [30] and irreversible [31] universal 
steady flow heat pump cycles with constant-temperature heat reservoirs have been studied, but practical 
heat pump cycles are always irreversible ones and with variable-temperature heat reservoirs. There are 
lacks of unified descriptions of exergoeconomic performances for various heat pump cycles with 
variable-temperature heat reservoirs. On the basis of variable-temperature heat reservoir Carnot and 
Brayton heat pump cycle models [42-45], this paper will build an irreversible universal steady flow heat 
pump cycle model consisting of two heat-absorbing branches, two heat-releasing branches and two 
adiabatic branches with variable-temperature heat reservoirs and the losses of heat-resistance and internal 
irreversibility. The major work of this paper is to provide a unified description of the finite time 
exergoeconomic performance for various irreversible heat pump cycles with variable-temperature heat 
reservoirs. The results obtained herein include the optimal finite time exergoeconomic performance 
characteristics of end reversible and irreversible variable- and constant-temperature heat reservoir 
Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles. 
 
2. Cycle model 
An irreversible universal variable-temperature heat reservoir heat pump cycle model with heat-resistance 
and internal irreversibility is shown in Figure 1. The following assumptions are made for this model: 
(1) The working fluid is an ideal gas and flows through the system in a quasi-steady fashion. The cycle 
consists of two heat-absorbing branches (1-2 and 2-3) with constant working fluid thermal capacity rates 
(mass flow rate of the working fluid and specific heat product) 1wfC  and 2wfC , two heat-releasing 
branches (4-5 and 5-6) with constant working fluid thermal capacity rates 4wfC  and 3wfC  and two 
adiabatic branches (3-4 and 6-1). All six processes are irreversible.  
(2) The hot- and cold-side heat exchangers are considered to be counter-flow heat exchangers, the 
working fluid temperatures are different from the heat reservoir temperatures owing to the heat transfer. 
The heat transfer rate ( HQ ) released to the heat sink, i.e. the heating load of the cycle, and the heat 
transfer rate ( LQ ) supplied by the heat source are: 
 

1 2H H HQ Q Q= +  (1) 
 

1 2L L LQ Q Q= +  (2) 
 
where 1 2H HQ Q+  is due to the driving force of temperature differences between the high-temperature 
(hot-side) heat sink and working fluid, 1 2L LQ Q+  is due to the driving force of temperature differences 
between the low-temperature (cold-side) heat source and working fluid. The high-temperature heat sink 
is considered with thermal capacity rate HC  and the inlet and outlet temperatures of the heat-releasing 
fluid are HinT , 1HoutT  and 2HoutT , respectively. The low-temperature heat source is considered with thermal 
capacity rate LC  and the inlet and outlet temperatures of the heat-absorbing fluid are LinT , 1LoutT  and 

2LoutT , respectively. 
(3) A constant coefficient φ  is introduced to characterize the additional internal miscellaneous 
irreversibility effects: ' '

1 2 1 2( ) / ( ) 1H H H HQ Q Q Qφ = + + ≥ , where 1 2H HQ Q+  is the rate of heat-flow from the 
warm working-fluid to the heat-sink for the irreversible cycle model, while ' '

1 2H HQ Q+  is that for the 
endoreversible cycle model with the only loss of heat-resistance. 
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To summarize, the irreversible universal heat pump cycle model with variable-temperature heat 
reservoirs is characterized by the following three aspects: 
(1) The different values of HC  and LC . If HC → ∞  and LC → ∞ , the cycle model is reduced to the 
irreversible universal heat pump cycle model with constant-temperature heat reservoirs [31]. 
(2) The different values of 1wfC , 2wfC , 3wfC  and 4wfC . If 1wfC , 2wfC , 3wfC  and 4wfC  have different values, 
the cycle model can be reduced to various special heat pump cycles. 
(3) The different values of φ . If 1φ = , the cycle model is reduced to the endoreversible universal heat 
pump cycle model with variable-temperature heat reservoirs. If 1φ = , HC → ∞  and LC → ∞  further, the 
cycle model is reduced to the endoreversible universal heat pump cycle model with constant-temperature 
heat reservoirs [30]. 
 

 
 

Figure 1. Cycle model 
 
According to the properties of heat transfer, heat reservoir, working fluid, and the theory of heat 
exchangers, the heat transfer rates ( 1HQ  and 2HQ ) released to the heat sink and the heat transfer rates ( 1LQ  
and 2LQ ) supplied by heat source are, respectively, given by 
 

1 1 5 1 6 5 1 6 1

3 5 6 1min 1 5

[( ) ( )] / ln[( ) / ( )] ( )
( ) ( )

H H Hout Hin Hout Hin H Hout Hin

wf H H Hin

Q U T T T T T T T T C T T
C T T C E T T

= − − − − − = −
= − = −

 (3) 

 
2 2 4 2 5 1 4 2 5 1 2 1

4 4 5 2 min 2 4 1

[( ) ( )] / ln[( ) / ( )] ( )
( ) ( )

H H Hout Hout Hout Hout H Hout Hout

wf H H Hout

Q U T T T T T T T T C T T
C T T C E T T

= − − − − − = −

= − = −
 (4) 

 
1 1 1 2 2 1 1 2 2 1 1 2

1 2 1 1min 1 1 1

[( ) ( )] / ln[( ) / ( )] ( )
( ) ( )

L L Lout Lout Lout Lout L Lout Lout

wf L L Lout

Q U T T T T T T T T C T T
C T T C E T T

= − − − − − = −

= − = −
 (5) 

 
2 2 3 1 2 3 1 2 1

2 3 2 2 min 2 2

[( ) ( )] / ln[( ) / ( )] ( )
( ) ( )

L L Lin Lout Lin Lout L Lin Lout

wf L L Lin

Q U T T T T T T T T C T T
C T T C E T T

= − − − − − = −
= − = −

 (6) 

 
where 1HE , 2HE , 1LE  and 2LE  are the effectivenesses of the hot- and cold-side heat exchangers, and are 
defined as: 
 

1 1 1min 1max 1min 1max 1 1min 1max{1 exp[ (1 / )]} /{1 ( / ) exp[ (1 / )]}H H H H H H H H HE N C C C C N C C= − − − − − −  (7) 
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2 2 2 min 2 max 2 min 2 max 2 2 min 2 max{1 exp[ (1 / )]} /{1 ( / ) exp[ (1 / )]}H H H H H H H H HE N C C C C N C C= − − − − − −  (8) 
 

1 1 1min 1max 1min 1max 1 1min 1max{1 exp[ (1 / )]} /{1 ( / ) exp[ (1 / )]}L L L L L L L L LE N C C C C N C C= − − − − − −  (9) 
 

2 2 2min 2 max 2min 2 max 2 2 min 2max{1 exp[ (1 / )]} /{1 ( / )exp[ (1 / )]}L L L L L L L L LE N C C C C N C C= − − − − − −  (10) 
 
where 1minHC  and 1maxHC  are the minimum and maximum of HC  and 3wfC , respectively; 2 minHC  and 

2 maxHC  are the minimum and maximum of HC  and 4wfC , respectively; 1minLC  and 1maxLC  are the minimum 
and maximum of LC  and 1wfC , respectively; 2 minLC  and 2 maxLC  are the minimum and maximum of LC  
and 2wfC , respectively; and 1HN , 2HN , 1LN  and 2LN  are the numbers of heat transfer units of the hot- and 
cold-side heat exchangers, respectively: 
 

1min 3min{ , }H H wfC C C= , 1max 3max{ , }H H wfC C C=  (11) 
 

2 min 4min{ , }H H wfC C C= , 2 max 4max{ , }H H wfC C C=  (12) 
 

1min 1min{ , }L L wfC C C= , 1max 1max{ , }L L wfC C C=  (13) 
 

2 min 2min{ , }L L wfC C C= , 2max 2max{ , }L L wfC C C=  (14) 
 

1 1 1min/H H HN U C= , 2 2 2 min/H H HN U C= , 1 1 1min/L L LN U C= , 2 2 2 min/L L LN U C=  (15) 
 
where 1HU , 2HU , 1LU  and 2LU  are the heat conductances, that is, the product of heat transfer coefficient 
α  and heat transfer surface area F . 
 
3. Finite time exergoeconomic performance analysis 
Combining equations (3)-(6), one can obtain: 
 

( ) ( )5 3 6 1min 1 3 1min 1wf H H Hin wf H HT C T C E T C C E= − −  (16) 
 

1 2 3 1 2 6 1 1 4 2 2

3 4 6 2 2 3 1 1 4

4

2 2

[ ( ) / ( )

( )] [( )( )]
H min H min wf H H Hin H H min H Hin wf H min H

wf wf H min H Hin wf H min H wf H min H

C C C T T C C T C C

C C T C T C C C

T

C

− + + − + +

       − − −

= E E E E
E E E  (17) 

 
1 1 2 2 1 2 3 1 1 2 2 2

1 2 3 2 2 1 1 1 2 2 2

( ) ([ )

( )] / ) )][( (
L min L min wf L L Lin L L min L Lin L min L wf

wf wf L min L Lin wf L min L wf L min L

T C C C T T C C T C C

C C T C T C C C C

= +

      − −

− −

−

+E E E E
E E E  (18) 

 
( ) ( )2 2 3 2 min 2 2 2 min 2wf L L Lin wf L LT C T C E T C C E= − −  (19) 

 
The second law of thermodynamics requires that: 
 

' ' 5 34 2
1 2 1 2 3 4 1 2

6 5 1 2

( ) ( ) ( ln ln ) ( ln ln )H H H H wf wf wf wf
T TT TQ Q Q Q C C C C
T T T T

φ = + + = + +  (20) 

Thus: 
 

2 1T T G=  (21) 
 
where: 
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3 2

1 1

4

11 2 3 1 2 6 1 1 4 2 2

3 4 6 3 6 1m2 2i 12 2 2n

[ ( ) / ( )

( )] [( ( )])

wf wf

wf wf

wf

wfH min H min wf H H Hin H H min H Hin wf H min H

wf wf H min H Hin wf H

C C
C C

C
C

wf H H Hin min H

G x y

C

C C C T T

T C E

C C T C C

C C T C T C CT

φ

φ

−

− + + − + +

      −

=

⎧ ⎫⎪ ⎪      ⎨ ⎬−⎪ ⎪⎩ ⎭−

E E E E
E E

 (22) 

 
where 5 6x T T=  and 3 2y T T= . 
 
Combining equations (3)-(6) with equations (18)-(22) gives: 
 

1 1 2 2 2 2 2 2

1 2 2 1 2 1 1 1 2 2 2
1

[ ( )]
[ ( 1) ]( )

L min L Lin L min wf L L wf L min L

L min L min wf L L L wf L min L wf L min L

C T C C C C C
GyC C C C C C C C

T
G
+ − +

− − + −
=

E E E
E E E E

 (23) 

 
1 1 2 2 2 2 2 2

1 2 2 1 2 1 1 1 2 2 2
2

[ ( )]
[ ( 1) ]( )

L min L Lin L min wf L L wf L min L

L min L min wf L L L wf L min L wf L min L

GC T C C C C C
GyC C C C C

T
G C C C

+ − +

− − + −
=

E E E
E E E E

 (24) 

 
1 1 2 2 2 2 2 2

1 2 2 1 2 1 1 1 2 2 2
3

[ ( )]
[ ( 1) ]( )

L min L Lin L min wf L L wf L min L

L min L min wf L L L wf L min L wf L min L

GyC T C C C C C
GyC C C C C G C C C

T
+ − +

− +
=

− −

E E E
E E E E

 (25) 

 
2

3 1 1 4 2 2 1 2 3 4 1 2 6

3 6 2 4 2 1 1 4 1 2 1 2

2
1 1

2

3

[ ( )( ) ( )

( )( ) ] /

[ ( )(

H Hin wf H min H wf H min H H min H min wf wf H H Hin

H wf Hin H min wf H H min H wf H min H min H H

H wf H min

H ut

H wf

o C T C C C C CT C C C T T

C C T T C C C C C C

C C C C

− − + − + +

            − + −  

            −

=

 

E E E E
E E E E

E 4 2 2 )]H min HC− E
 (26) 

 
1 2 1 2 1 2 1 1 1

2
1 1 1 1 1 1 1 2 2 2

2 2 2
2 2 1 2 1 1 1

2 { [( 1) (1 ) ]

( )( )( )

[(1 ) (

L min L min wf wf L L Lin wf L min L

L Lin wf L min L wf L min L wf wf L min L

L wf Lin L min wf L L min L wf

Lout C C C C T G C Gy C

C T C C C G C C C C

C C T G C C C C

T

Gy

− + − +

           − + − − +

           − + +

= E E E

E E E

E E 2 2 1

1 1 1 1 2 2 1 1 1

1 1 1 1 2 2 1 2

1 1 1 1 2 2 2

)

(1 ) ( 2) ]} /

{( )[

( )( )]}

L min L wf

wf L min wf L L min L L min wf L

wf L L min L L L min L min wf L L

L wf L min L wf wf L min L

C C

G C C C G C C C

C C C C GyC C C

C C G C C C C

− +

           − + −

          − − +

          + − −

E
E E E

E E E
E E

 (27) 

 
Substituting equations (3), (4), (16) and (17) into equation (1) yields the heating load of the cycle: 
 

1 2 3 4 1 2 6 2 3 4 2 6

1 1 3 6 4

1 2

2 2 3 1 1 4 2 2

[ ( ) / ( )

( )( )] / [( )( )]
H min H min wf wf H H Hin H H min wf wf H Hin

H min H wf Hin wf H min H wf H min H wf H mi

H

n H

H H

C C C C T T C C C C T T

C C T T C C C C C

Q Q

C

Q
− − + − +

      − −

= +   
      = 

 − −

E E E
E E E E

 (28) 

 
Substituting equations (5), (6), (18) and (19) into equation (2) yields the heat transfer rate supplied by the 
heat source: 
 

2 2
2 2 1 1 1 2 1 1 1 1

2 2 1 2 1 1 1 1 1 1 1

1 2 1 1 1 2 1

1 2

{ (1 / )[ ( 1) / ( 1)( )]

[ ( ) /

( 1)(

Lin L min L L min L L L min wf L L wf L min L

L min L L min wf L wf L min L L min L wf L

wf wf wf L min L wf L min

L L L

T C C C G y C C C G C C

C C C C C G C Gy C G C

G C C C C C

Q

C

Q Q

− − − − − − +

+ − − +

− − −

 = +

     = E E E E
E E E E

E E 1 1 1 2 1

1 1 1 1 2 2 2 1 2 2 1 2

)] ( 1) }

[( )( ) / ]
L L min wf wf L

wf L min L wf wf L min L L min L min wf L L L

G C C C

C G C C C C GyC C C C

+ −

+ − − −

/E
E E E E

 (29) 

 
Combining equations (28) with (29) gives the COP of the cycle: 
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1 2 3 4 1 2 6 2 3 4 2 6

1 1 3 6 4 2 2 3 1 1 4 2 2

1 2 3 4 1

[ ( ) / ( )

( )( )] / [( )( )]
[

H min H min wf wf H H Hin H H min wf wf H Hin

H min H wf Hin wf H min H wf H min H wf H min H

H min H min wf wf H

H H

H L

C C C C T T C C C C T T

C C T T C C C C C C
C C C C

Q Q
P Q Q

β

− − + − +

      − −  − −   

= =     
−

  

 

−
=

 

 

E E E
E E E E

E E 2 6 2 3 4 2 6

1 1 3 6 4 2 2 3 1 1 4 2 2

2 2
2 2 1 1 1 2 1 1 1

( ) / ( )

( )( )] / [( )( )]

{ (1 / )[ ( 1) / ( 1)(

H Hin H H min wf wf H Hin

H min H wf Hin wf H min H wf H min H wf H min H

Lin L min L L min L L L min wf L L wf L

T T C C C C T T

C C T T C C C C C C

T C C C G y C C C G C C

− + − +

     

   

 − −  − − −

− − − − − −  

E
E E E E

E E E 1

2 2 1 2 1 1 1 1 1 1 1

1 2 1 1 1 2 1 1 1 1 2 1

1 1 1 1 2 2 2 1 2 2

)]

[ ( ) /

( 1)( )] ( 1) }

[( )( )

min L

L min L L min wf L wf L min L L min L wf L

wf wf wf L min L wf L min L L min wf wf L

wf L min L wf wf L min L L min L min wf L

C C C C C G C Gy C G C

G C C C C C C G C C C

C G C C C C GyC C C

+

+ − − +

− − − + −

+ − − −

/

E
E E E E

E E E
E E E 1 2 / ]L LCE

 (30) 

 
where 2HoutT  and 2LoutT  are calculated by equations (26) and (27). 
 
Assuming that the environmental temperature is 0T , the exergy output rate of the cycle is: 
 

2 2

0 0

0 2 2 1 2

(1 ) ( 1)

[ ln( ) ln ( )]

Hout Lout

Hin Lin

T T

H LT T

H L H Hout Hin L Lout Lin H L

A C T T dT C T T dT

Q Q T C T T C T T Q Qη η

= − − −

= − − + = −

∫ ∫  (31) 

 
where 1 0 2 21 / [( ) / ln( / )]Hout Hin Hout HinT T T T Tη = − − , and 2 0 2 21 / [( ) / ln( / )]Lin Lout Lin LoutT T T T Tη = − − . 
Assuming that the prices of exergy output rate and power input are 1ψ  and 2ψ , the profit rate of the cycle 
is: 

1 2 1 1 2 2 1 2( ) ( )H LA P Q Qψ ψ ψ η ψ ψ ψ ηΠ = − = − + −  (32) 
 
Substituting equations (28) and (29) into equation (32) yields the profit rate of the cycle: 
 

1 2 3 4 1 2 6 2 3 4 2 6

1 1 3 6 4 2 2 3 1 1 4 2 2

2 2
2

1 1 2

2 1 2 12 1

[ ( ) / ( )

( )( )] / [( )( )]

{ (

)

1 /

(

( )

H min H min wf wf H H Hin H H min wf wf H Hin

H min H wf Hin wf H min H wf H min H wf H min H

Lin L min L L min L

C C C C T T C C C C T T

C C T T C C C C C C

T C C C

ψ η ψ

ψ ψ η

− − + − +

      − −  −

Π = −

−

− +

−

E E E
E E E E

E E 1 2 1 1

1 1 2 2 1 2 1 1 1 1 1 1 1

1 2 1 1 1 2 1 1 1 1 2 1

1 1 1

)[ ( 1) / ( 1)(

)] [ ( ) /

( 1)( )] ( 1) }

[ (

L L min wf L L wf

L min L L min L L min wf L wf wf L min L L min L L

wf wf wf L min L wf L min L L min wf wf L

wf L min L

G y C C C G C

C C C C C G C C G C Gy C

G C C C C C C G C C C

C G C

− − − − −

+ − + + − +

− − − + −

+ −

/

E
E E E E E

E E E
E 1 2 2 2 1 2 2 1 2)( ) / ]wf wf L min L L min L min wf L L LC C C GyC C C C− −E E E

 (33) 

 
In order to make the cycle operate normally, state point 2 must be between state points 1 and 3, and state 
point 5 must be between state points 4 and 6. Therefore, the ranges of x  and y  are: 
 

1 2 3 1 2 6 1 1 4 2 2

3 4 6 2 2 6 3 1 1 4 2 2

[ ( ) / ( )

( )] [ ( )

1

( )]
H min H min wf H H Hin H H min H Hin wf H min H

wf wf H min H Hin wf H min H wf H min H

C C C T T C C T C C

C C T C T T C C C C

x − + + − + +

       − −

≤ ≤

−

E E E E
E E E  (34) 

 
4

3
2

2

3 6

1 2 3 1 2

1

6 1 1 4 2 2

3 4 6 2 2 2 2 2min 1

[ ( ) / ( )

( )] [ ( )]
1

( )

wf
wf

wf
wf H min H min wf H H Hin H H min H Hin wf H min

C
C

C
C

w

H

wf wf H mi f H H Hin H Hin n wf H min H

C C C T T C C T C C

C C T C T C
y

C
x

C T C E T

φ
φ − + + − + +

      

⎧ ⎫⎪ ⎪≤ ≤ ⎨ ⎬−⎪ ⎪⎩ ⎭− −

E E E E
E E

 (35) 

 
Note that for the process to be potential profitable, the following relationship must exist: 2 10 1ψ ψ< < , 
because one unit of work input must give rise to at least one unit of exergy output. 
When the price of exergy output rate becomes very large compared with the price of the power input, 
i.e. 2 1 0ψ ψ → , equation (32) becomes: 
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1 AψΠ =  (36) 
 
where A  is the exergy output rate of the irreversible universal heat pump cycle. That is, the profit rate 
maximization approaches the exergy output rate maximization. 
When the price of exergy output rate approaches the price of the power input, i.e. 2 1 1ψ ψ → , equation 
(32) becomes 
 

1 0 2 2 1 0[ ln( ) ln ( )]H Hout Hin L Lout LinT C T T C T T Tψ ψ σΠ = − + = −  (37) 
 
where 2 2ln( ) ln ( )H Hout Hin L Lout LinC T T C T Tσ = +  is the entropy production rate of the irreversible universal 
heat pump cycle. That is, the profit rate maximization approaches the entropy production rate 
minimization, i.e., the minimum exergy loss. 
 
4. Discussion 
Equations (30) and (33) are generalized. If HC , LC  and φ  have different values, equations (30) and (33) 
can be simplified into the corresponding analytical formulae for various endoreversible and irreversible, 
constant- and variable-temperature heat reservoir heat pump cycles. 
Figure 2 shows the finite time exergoeconomic performance characteristics of the irreversible universal 
heat pump cycle with variable-temperature heat reservoirs. Heat conductances of the hot- and cold-side 
heat exchangers are set as 1 0HU = , 2 0LU =  and 2 1 3 /H LU U kW K= =  for Brayton, Otto, Diesel and 
Atkinson heat pump cycles; 1 2 1 2 /H H LU U U kW K= = =  and 2 0LU =  for Dual heat pump cycle; 1 0HU =  
and 2 1 2 2 /H L LU U U kW K= = =  for Miller heat pump cycle, respectively. Internal irreversibility and price 
ratio are set as 1.1φ =  and 1 2 5ψ ψ = , respectively. One can continue to discuss the special cases of the 
universal heat pump cycle for different thermal capacity rates of the working fluid ( 1wfC , 2wfC , 3wfC  and 

4wfC ) in detail, whose dimensionless profit rate versus COP curves are also shown in Figure 2. 
 

 
 

Figure 2.  Π  vs. β  characteristics of irreversible universal heat pump cycle with variable-temperature 
heat reservoirs 

 
(1) When 1 2wf wf pC C mC= = &  (mass flow rate m&  of the working fluid and constant pressure specific heat 

pC  product) and 3 4wf wf pC C mC= = & , 1 0HU = , 2 0LU =  and 1x y= = , equations (30) and (33) become the 
COP and finite time exergoeconomic performance characteristics of an irreversible variable-temperature 
heat reservoir steady flow Brayton heat pump cycle with the losses of heat-resistance and internal 
irreversibility. 
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(2) When 1 2wf wf vC C mC= = &  (mass flow rate m&  of the working fluid and constant volume specific heat vC  
product) and 3 4wf wf vC C mC= = & , 1 0HU = , 2 0LU =  and 1x y= = , equations (30) and (33) become the COP 
and finite time exergoeconomic performance of an irreversible variable-temperature heat reservoir steady 
flow Otto heat pump cycle with the losses of heat-resistance and internal irreversibility. 
(3) When 1 2wf wf vC C mC= = &  and 3 4wf wf pC C mC= = & , 1 0HU = , 2 0LU =  and 1x y= = ,  equations (30) and 
(33) become the COP and finite time exergoeconomic performance characteristics of an irreversible 
variable-temperature heat reservoir steady flow Diesel heat pump cycle with the losses of heat-resistance 
and internal irreversibility. 
(4) When 1 2wf wf pC C mC= = &  and 3 4wf wf vC C mC= = & , 1 0HU = , 2 0LU =  and 1x y= = ,  equations (30) and 
(33) become the COP and finite time exergoeconomic performance characteristics of an irreversible 
variable-temperature heat reservoir steady flow Atkinson heat pump cycle with the losses of heat-
resistance and internal irreversibility. 
(5) When 1 2wf wf vC C mC= = & , 3wf vC mC= &  and 4wf pC mC= & , 1 0HU ≠ , 2 0HU ≠ , 2 0LU =  and 1y = , equations 
(30) and (33) become the COP and finite time exergoeconomic performance characteristics of an 
irreversible variable-temperature heat reservoir steady flow Dual heat pump cycle with the losses of heat-
resistance and internal irreversibility. If 1 0HU → , 2 0LU =  and 1== yx  further, the Dual heat pump 
cycle is close to the Diesel heat pump cycle. If 2 0HU → , 2 0LU =  and 1=y  further, the Dual heat pump 
cycle is close to the Otto heat pump cycle. 
In this case, the range of x  becomes: 
 

1 2 3 1 2 6 1 1 4 2 2

3 4 6 2 2 6 3 1 1 4 2 2

[ ( ) / ( )

( )] [ ( )

1

( )]
H min H min wf H H Hin H H min H Hin wf H min H

wf wf H min H Hin wf H min H wf H min H

C C C T T C C T C C

C C T C T T C C C C

x − + + − + +

       − −

≤ ≤

−

E E E E
E E E  (38) 

 
and the value of x  is given by: 
 

1 2 3 1 2 6 1 1 4 2 25 6

3 63 4 6 2 2 2 2 21min 1

[ ( ) / ( )

( )

/

( )] [ ( )]
H min H min wf H H Hin H H min H Hin wf H min H

wf wf H min H Hi wf H Hn wf H min HHin

C C C T T C Cx T T

C

T C C

C C T C T CT C E T C

− + + − + +

   

=

− −

=

−

E E E E
E E

 (39) 

 
(6) When 1wf pC mC= & , 2wf vC mC= &  and 3 4wf wf vC C mC= = & , 1 0HU = , 1 0LU ≠ , 2 0LU ≠  and 1x = , equations 
(30) and (33) become the COP and finite time exergoeconomic performance characteristics of an 
irreversible variable-temperature heat reservoir steady flow Miller heat pump cycle with the losses of 
heat-resistance and internal irreversibility. If 1 0HU = , 2 0LU →  and 1== yx  further, the Miller heat 
pump cycle is close to the Atkinson heat pump cycle. If 1 0HU = , 1 0LU →  and 1x =  further, the Miller 
heat pump cycle is close to the Otto heat pump cycle. 
In this case, the range of y  is: 
 

1 2 3 1 2 6 1 1 4 2 2

3 4 6 2 2 2

1

3 6 1 2 2min 1

[ ( ) / ( )

( )] [ ( )
1

( ])
H min H min wf H H Hin H H min H Hin wf H min H

wf wf H min H Hin wf Hwf H miHin n HH

C C C T T C C T C C

C C T C T C C
y

C T C E T

φ− + + − + +

      

⎧ ⎫⎪ ⎪≤ ≤ ⎨ ⎬− ⎭− −⎪ ⎪⎩

E E E E
E E

 (40) 

 
Combining equations (18), (19) and (22) give the following equation that the working fluid temperature 

3T  should satisfy: 
 

1 1 1

1 2 2 1 2 3 1 1 2 2 2 1 2 3 2 2

1 2

1

2 3 2 min 2 3 2 2 min 2 2 3 2 mi

1 2

n 2

3

( )( )[ /

( ) ( ) (
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[

)[ ]

k
wf L L Lin wf L L wf L L Linwf L min L

L min L min wf L L Lin L L min L Lin L min L wf wf wf L min L Lin

H min H min wf H H

C C C T C E T T C C E C T C E T
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−

+ −

− − −

− − + =

E
E E E E E
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where k  is the ratio of the specific heats. Moreover, combining equations (18), (19), (21) with equation 
(41) gives G  and y . 
(7) When 1 2 3 4wf wf wf wfC C C C= = = → ∞ , equations (30) and (33) become the COP and finite time 
exergoeconomic performance characteristics of an irreversible variable-temperature heat reservoir steady 
flow Carnot heat pump cycle with the losses of heat-resistance and internal irreversibility. Specially, if 

HC → ∞  and LC → ∞  further, the finite time exergoeconomic performance characteristic of an 
irreversible Carnot heat pump cycle with variable-temperature heat reservoirs become the finite time 
exergoeconomic performance characteristics of endoreversible ( 1φ = ) [21, 24] and irreversible ( 1φ > ) 
[28] Carnot heat pump cycle with constant-temperature heat reservoirs, respectively. 
 
5. Finite time exergoeconomic performance optimization 
5.1 Optimal distributions of heat conductance 
If heat conductances of hot- and cold-side heat exchangers are changeable, the profit rate of the 
irreversible universal heat pump cycle may be optimized by searching the optimal heat conductance 
distributions for the fixed total heat exchanger inventory. For the fixed heat exchanger inventory TU , that 
is, for the constraint of 1 2 1 2H H L L TU U U U U+ + + = , defining the distributions of heat conductance 

1 1 /H H Tu U U= , 2 2 /H H Tu U U= , 1 1 /L L Tu U U=  and 2 2 /L L Tu U U=  leads to: 
 

1 1H H TU u U= , 2 2H H TU u U= , 1 1L L TU u U= , 1 1L L TU u U= , 2 2L L TU u U=  (42) 
 
The following conditions should be satisfied: 10 1Hu≤ ≤ , 20 1Hu≤ ≤ , 10 1Lu≤ ≤ , 20 1Lu≤ ≤ , and 

1 2 1 2 1H H L Lu u u u+ + + = . Moreover, heat conductance distributions are set as 1 0Hu =  and 2 0Lu =  for 
Brayton, Otto, Diesel and Atkinson heat pump cycles; 2 0Lu =  for Dual heat pump cycle; 1 0Hu =  for 
Miller heat pump cycle, respectively.  
To illustrate the preceding analyses, one can take the irreversible Brayton heat pump cycle with variable-
temperature heat reservoirs (air as the working fluid) as a numerical example. In the calculations, it is set 
that 290.0HinT K= , 268.0LinT K= , 1.2 /H LC C kW K= = , 0.7165 / ( )vC kJ kg K= ⋅ , 1.0031 / ( )pC kJ kg K= ⋅ , 

1.4k = , 1.1φ = , 5 /TU kW K= , 1.1165 /m kg s=&  and 1 2/ 5ψ ψ = . If there are no special explanations, the 
parameters are set as above. The working fluid temperature 6T  is a variable and its reasonable value is 
greater than HinT . The calculations illustrate that the values of x  and y  are always in their ranges. The 
dimensionless profit rate is defined as 2(0.9 )L VmT C ψΠ = Π & .  
Figure 3 shows the effect of the price ratio ( 1 2ψ ψ ) on the dimensionless profit rate ( Π ) versus COP 
( β ) for irreversible variable-temperature heat reservoir Brayton heat pump cycle. From Figure 3, one 
can see that Π  increases with the increase in 1 2ψ ψ  for the fixed β . Moreover, when 1 2 1ψ ψ = , the 
maximum profit rate is not greater than zero, i.e., the heat pump is not profitable regardless of any 
working condition.  
The dimensionless profit rate ( Π ) versus COP ( β ) and the hot-side heat conductance distribution ( 2Hu ) 
of an irreversible variable-temperature heat reservoir Brayton heat pump cycle with 1 2 5ψ ψ =  and 

1.1φ =  is shown in Figure 4. It indicates that the curve of dimensionless profit rate versus hot-side heat 
conductance distribution is a parabolic-like one for the fixed COP. There exists an optimal heat 
conductance distribution ( 2, ,H optu Π ) which leads to the optimal dimensionless profit rate ( ,opt uΠ ). For Otto, 
Diesel and Atkinson heat pump cycles, the three-dimensional diagram characteristics among 
dimensionless profit rate versus COP and heat conductance distribution are similar with those shown in 
Figure 4.  
The three-dimensional diagram among the dimensionless profit rate ( Π ) and heat conductance 
distributions ( 1Hu  and 2Hu ) of an irreversible variable-temperature heat reservoir Dual heat pump cycle 
with 3β = , 1 2 5ψ ψ =  and 1.1φ =  is shown in Figure 5. It indicates that there exists a pair of 1, ,H optu Π  near 
zero and 2, ,H optu Π  near 0.5 , which lead to the optimal dimensionless profit rate. In this case, Dual heat 
pump cycle becomes Diesel heat pump cycle. The three-dimensional diagram among the dimensionless 
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profit rate ( Π ) and heat conductance distributions ( 1Lu  and 2Lu ) of an irreversible variable-temperature 
heat reservoir Miller heat pump cycle with 3β = , 1 2 5ψ ψ =  and 1.1φ =  is shown in Figure 6. It indicates 

that there exists a pair of 1, ,L optu Π  near 0.5  and 2, ,L optu Π  near zero, which lead to the optimal 
dimensionless profit rate. In this case, Miller heat pump cycle becomes Atkinson heat pump cycle.  
Figure 7 show the optimal heat conductance distribution ( 2, ,H optu Π ) versus COP ( β ) for Brayton, Otto, 

Diesel and Atkinson heat pump cycles. It indicates that 2, ,H optu Π  is a little greater than 0.5  for Brayton, 

Otto, Diesel and Atkinson heat pump cycles, and the COP has little effects on 2, ,H optu Π . Moreover, when 

carrying out heat conductance optimizations, 2, ,H optu Π  for Dual heat pump cycle and 2, ,L optu Π  for Miller 
heat pump cycle are close to the corresponding optimal heat conductance distributions of Diesel and 
Atkinson heat pump cycles as shown in Figures 5 and 6, respectively. 
 

 
 
Figure 3. Effect of 1 2/ψ ψ  on Π  vs. β  characteristic for irreversible variable-temperature heat reservoir 

Brayton heat pump cycle 
 
 

 
 

Figure 4. Π  vs. β  and 2Hu  for irreversible variable-temperature heat reservoir Brayton heat pump cycle 
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Figure 5. Π  vs. 1Hu  and 2Hu  for irreversible variable-temperature heat reservoir Dual heat pump cycle 
 

 
 

Figure 6. Π  vs. 1Lu  and 2Lu  for irreversible variable-temperature heat reservoir Miller heat pump cycle 
 

 
 

Figure 7.  2 ,H optu  Π  vs. β  for irreversible variable-temperature heat reservoir Brayton, Otto, Diesel and 
Atkinson heat pump cycles 
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5.2 Optimal finite time exergoeconomic performance 
Figure 8 shows the optimal dimensionless profit rate ( ,opt uΠ ) versus COP ( β ) characteristic for 
irreversible variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual and Miller heat 
pump cycles with 1 2 5ψ ψ =  and 1.1φ = . It indicates that ,opt uΠ  decreases with the increase in β . Dual 
and Diesel, Miller and Atkinson heat pump cycles have the same optimal dimensionless profit rate versus 
COP characteristics, respectively. For the fixed β , Brayton heat pump cycle has the maximum ,opt uΠ  
among the six heat pump cycles, and Otto heat pump cycle has the minimum. 
 

 
 

Figure 8. ,opt uΠ  vs. β  characteristics for six heat pump cycles 
 
Figures 9-11 show the effect of internal irreversibility (φ ), total heat exchanger inventory ( TU ) and 
thermal capacity rate of the working fluid ( 4wfC ) on the optimal dimensionless profit rate ( ,opt uΠ ) versus 
COP ( β ) characteristics of an irreversible variable-temperature heat reservoir Brayton heat pump cycle 
with 1 2 5ψ ψ =  and 1.2 /H LC C kW K= = , respectively. From Figure 9, one can see that for the fixed 
COP, ,opt uΠ  decreases with the increase in φ . Moreover, when 1φ = , ,opt uΠ  versus β  characteristic of an 
irreversible Brayton heat pump cycle with variable-temperature heat reservoirs becomes that of an 
endoreversible one. From Figure 10, one can see that ,opt uΠ  increases with the increase of TU  for the 
fixed β , but the increment decreases gradually. From Figure 11, one can see that ,opt uΠ  increases with 
the increase of 4wfC  when 4wfC  is lower than HC  and LC ; ,opt uΠ  decreases with the increase of 4wfC  
when 4wfC  is greater than HC  and LC . Moreover, the effects of internal irreversibility, total heat 
exchanger inventory and thermal capacity rate of the working fluid on the optimal finite time 
exergoeconomic performances of Otto, Diesel, Atkinson, Dual and Miller heat pump cycles are similar 
with those shown in Figures 9-11. 
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Figure 9. Effect of φ  on ,opt uΠ  vs. β  characteristic for irreversible variable-temperature heat reservoir 
Brayton heat pump cycle 

 

 
 

Figure 10. Effect of TU  on ,opt uΠ  vs. β  characteristic for irreversible variable-temperature heat reservoir 
Brayton heat pump cycle 

 

 
 

Figure 11. Effect of 4wfC  on ,opt uΠ  vs. β  characteristic for irreversible variable-temperature heat 
reservoir Brayton heat pump cycle 
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5.3 Optimal thermal capacity rate matching between the working fluid and heat reservoirs 
Figure 12 shows a three-dimensional diagram among the dimensionless profit rate ( Π ), thermal capacity 
rate matching ( 4 /wf Lc C C= ) between the working fluid and heat reservoirs and heat conductance 
distribution ( 2Hu ) of an irreversible variable-temperature heat reservoir Brayton heat pump cycle with 

3β = , 1 2 5ψ ψ =  and 1.1φ = . From Figure 12, one can see that the curve of Π  versus c  is a parabolic-
like one for the fixed 2Hu . There exist an optimal thermal capacity rate matching ( optc ) between the 
working fluid and heat reservoirs and an optimal heat conductance distribution ( 2,H optu ) which lead to the 
double maximum dimensionless profit rate. 
Figures 13-15 show the effect of internal irreversibility (φ ), total heat exchanger inventory ( TU ) and 
heat capacity ratio of the heat reservoirs ( /H LC C ) on the optimal dimensionless profit rate ( ,opt uΠ ) versus 
thermal capacity rate matching ( c ) between the working fluid and heat reservoirs characteristics of an 
irreversible variable-temperature heat reservoir Brayton heat pump cycle with 1 2 5ψ ψ = , respectively. 
From Figure 13, for the fixed c , ,opt uΠ  decreases with the increase in φ . Moreover, when 1φ = , ,opt uΠ  
versus c  characteristic of an irreversible Brayton heat pump cycle with variable-temperature heat 
reservoirs becomes that of an endoreversible one. From Figure 14, one can see that ,opt uΠ  increases with 
the increase in TU  for the fixed c , but the increment decreases gradually. From Figure 15, one can see 
that when / 1H LC C = , the optimal thermal capacity rate matching between the working fluid and heat 
reservoirs is 1optc = , which leads to the double maximum dimensionless profit rate. Meanwhile, optc  
increases with the increase in /H LC C . Moreover, the effects of internal irreversibility, total heat 
exchanger inventory and heat capacity ratio of the heat reservoirs on the optimal finite time 
exergoeconomic performances of Otto, Diesel, Atkinson, Dual and Miller heat pump cycles are similar 
with those shown in Figures 13-15. 
 

 
 

Figure 12. Π  vs. c  and 2Hu  for irreversible variable-temperature heat reservoir Brayton heat pump cycle 
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Figure 13. Effect of φ  on ,opt uΠ  vs. c  characteristic for irreversible variable-temperature heat reservoir 
Brayton heat pump cycle 

 

 
 
Figure 14. Effect of TU  on ,opt uΠ  vs. c  characteristic for irreversible variable-temperature heat reservoir 

Brayton heat pump cycle 
 

 
 

Figure 15. Effect of /H LC C  on ,opt uΠ  vs. c  characteristic for irreversible variable-temperature heat 
reservoir Brayton heat pump cycle 
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6. Conclusion 
Finite time exergoeconomic performance of an irreversible universal steady flow heat pump cycle model 
with variable-temperature heat reservoirs, and the losses of heat transfer and internal irreversibility is 
analyzed and optimized by using the theory of finite time thermodynamics. Expressions for COP and 
profit rate are derived and are used to discuss the optimal finite time exergoeconomic performance of the 
universal heat pump cycle. Numerical examples show that the optimal hot-side heat conductance 
distributions are a little greater than 0.5  for Brayton, Otto, Diesel and Atkinson heat pump cycles; 
optimal performances of Dual and Miller heat pump cycles are close to those of Diesel and Atkinson heat 
pump cycles, respectively. There exist an optimal heat conductance distribution and an optimal thermal 
capacity rate matching between the working fluid and heat reservoirs which lead to the double maximum 
profit rate. Moreover, the effects of internal irreversibility, total heat exchanger inventory, thermal 
capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time 
exergoeconomic performance and optimal thermal capacity rate matching between the working fluid and 
heat reservoirs are discussed. The results obtained herein include the optimal finite time exergoeconomic 
performance of endoreversible and irreversible, constant- and variable- temperature heat reservoir 
Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles, and can provide some 
theoretical guidelines for parameter designs and performance optimizations of various practical heat 
pumps. 
 
Acknowledgements 
This paper is supported by The National Natural Science Foundation of P. R. China (Project No. 
10905093), The Program for New Century Excellent Talents in University of P. R. China (Project No. 
NCET-04-1006) and The Foundation for the Author of National Excellent Doctoral Dissertation of P. R. 
China (Project No. 200136). 
 
References 
[1] Novikov II. The efficiency of atomic power stations (A review). Atommaya Energiya 3, 1957(11): 

409. 
[2] Chambdal P. Les Centrales Nucleases. Paris: Armand Colin, 1957(11): 41-58. 
[3] Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys., 

1975, 43(1): 22-24. 
[4] Andresen B. Finite-Time Thermodynamics. Physics Laboratory �, University of  Copenhagen, 

1983. 
[5] Andresen B, Salamon P and Berry R S. Thermodynamics in finite time. Phys. Today, 1984 (Sept.): 

62-70. 
[6] Andresen B, Berry R S, Ondrechen M J, Salamon P. Thermodynamics for processes in finite time. 

Acc. Chem. Res. 1984, 17(8): 266-271. 
[7] Sieniutycz S, Shiner J S. Thermodynamics of irreversible processes and its relation to chemical 

engineering: Second law analyses and finite time thermodynamics. J. Non-Equilib. Thermodyn., 
1994, 19(4): 303-348. 

[8] Bejan A. Entropy generation minimization: The new thermodynamics of finite-size device and 
finite-time processes. J. Appl. Phys., 1996, 79(3): 1191-1218. 

[9] Feidt M. Thermodynamique et Optimisation Energetique des Systems et Procedes (2nd Ed.). Paris: 
Technique et Documentation, Lavoisier, 1996. 

[10] Hoffmann K H, Burzler J M and Schubert S. Endoreversible Thermodynamics. J. Non-Equilib. 
Thermodyn., 1997, 22(4): 311-355. 

[11] Berry R S, Kazakov V A, Sieniutycz S, Szwast Z, Tsirlin A M. Thermodynamic Optimization of 
Finite Time Processes. Chichester: Wiley, 1999. 

[12] Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation 
minimization of energy systems. J. Non-Equilib. Thermodyn., 1999, 24(4): 327-359. 

[13] Sieniutycz S. Thermodynamic limits on production or consumption of mechanical energy in 
practical and industry systems. Progress Energy & Combustion Sci., 2003, 29(3): 193-246. 

[14] Feidt M. Optimal use of energy systems and processes. Int. J. Exergy, 2008, 5(5/6): 500-531. 
[15] Sieniutycz S, Jezowski J. Energy Optimization in Process Systems. Oxford: Elsevier, 2009. 
[16] Tsatsaronts G. Thermoeconomic analysis and optimization of energy systems. Progress Energy & 

Combustion Sci., 1993, 19(3): 227-257. 



International Journal of Energy and Environment (IJEE), Volume 1, Issue 6, 2010, pp.969-986 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2010 International Energy & Environment Foundation. All rights reserved. 

985

[17] El-Sayed M Y. The Thermoeconomics of Energy Conversion. London: Elsevier, 2003. 
[18] Salamon P, Nitzan A. Finite time optimizations of a Newton's law Carnot cycle. J. Chem. Phys., 

1981, 74(6): 3546-3560. 
[19] Chen L, Sun F and Chen W. Finite time exergoeconomic performance bound and optimization 

criteria for two-heat-reservoir refrigerators. Chinese Sci. Bull., 1991, 36(2): 156-157 (in Chinese). 
[20] Chen L, Sun F, Wu C. Exergoeconomic performance bound and optimization criteria for heat 

engines. Int. J. Ambient Energy, 1997, 18(4): 216-218. 
[21] Chen L, Sun F. The maximum profit rate characteristic of Carnot heat pump. Practice Energy 

Source, 1993(3): 29-30 (in Chinese). 
[22] Wu C, Chen L, Sun F. Effect of heat transfer law on finite time exergoeconomic performance of 

heat engines. Energy, The Int. J., 1996, 21(12): 1127-1134. 
[23] Chen L, Wu C, Sun F. Effect of heat transfer law on finite time exergoeconomic performance of a 

Carnot refrigerator. Exergy, An Int. J., 2001, 1(4): 295-302.  
[24] Wu C, Chen L, Sun F. Effect of heat transfer law on finite time exergoeconomic performance of a 

Carnot heat pump. Energy Convers. Mgmt., 1998, 39(7): 579-588.  
[25] Chen L, Sun F, Wu C. Maximum profit performance for generalized irreversible Carnot engines. 

Appl. Energy, 2004, 79(1): 15-25. 
[26] Chen L, Zheng Z, Sun F, Wu C. Profit performance optimization for an irreversible Carnot 

refrigeration cycle. Int. J. Ambient Energy, 2008, 29(4): 197-206. 
[27] Chen L, Zheng Z, Sun F. Maximum profit performance for a generalized irreversible Carnot heat 

pump cycle. Termotehnica, 2008, 12(2): 22-26. 
[28] Zheng Z, Chen L, Sun F, Wu C. Maximum profit performance for a class of universal steady flow 

endoreversible heat engine cycles. Int. J. Ambient Energy, 2006, 27(1): 29-36. 
[29] Kan X, Chen L, Sun F, Wu F. Exergoeconomic performance optimization for a steady flow 

endoreversible refrigerator cycle model including five typical cycles. Int. J. Low-Carbon Tech., 
2010, 5(2), 74-80. 

[30] Feng H, Chen L, Sun F. Finite time exergoeconomic performance optimization for a universal 
steady flow endoreversible heat pump model. Int. J. Low-Carbon Tech., 2010, 5(2), 105-110. 

[31] Feng H, Chen L, Sun F. Finite time exergoeconomic performance optimization for a universal 
steady flow irreversible heat pump model. Int. J. Sustainable Energy, 2010, in press. 

[32] Chen L, Sun F, Wu C. Maximum profit performance of an absorption refrigerator. Int. J. Energy, 
Environment, and Economics, 1996, 4(1): 1-7. 

[33] Chen L, Wu C, Sun F, Cao S. Maximum profit performance of a three-heat-reservoir heat pump. 
Int. J. Energy Res., 1999, 23(9): 773-777.  

[34] Qin X, Chen L, Sun F, Wu C. Thermoeconomic optimization of an endoreversible four-heat-
reservoir absorption-refrigerator. Appl. Energy, 2005, 81(4): 420-433. 

[35] Tao G, Chen L, Sun F. Exergoeconomic performance optimization for an endoreversible simple 
gas turbine closed-cycle cogeneration plant. Int. J. Ambient Energy, 2009, 30(3): 115-124.  

[36] Tao G, Chen L, Sun F. Exergoeconomic performance optimization for an endoreversible 
regenerative gas turbine closed-cycle cogeneration plant. Rev. Mex. Fis., 2009, 55(3): 192-200. 

[37] Sahin B, Kodal A. Performance analysis of an endoreversible heat engine based on a new 
thermoeconomic optimization criterion. Energy Convers. Mgmt., 2001, 42(9): 1085-1093. 

[38] Sahin B, Kodal A. Finite time thermoeconomic optimization for endoreversible refrigerators and 
heat pumps. Energy Convers. Mgmt., 1999, 40(9): 951-960. 

[39] Kodal A, Sahin B. Finite time thermoeconomic optimization for irreversible heat engines. Int. J. 
Thermal Sci., 2003, 42(8): 777-782. 

[40] Kodal A, Sahin B, Yilmaz T. Effects of internal irreversibility and heat leakage on the finite time 
thermoeconomic performance of refrigerators and heat pumps. Energy Convers. Mgmt., 2000, 
41(6): 607-619. 

[41] Kodal A, Sahin B, Ekmekci I, Yilmaz T. Thermoeconomic optimization for irreversible absorption 
refrigerators and heat pumps. Energy Convers. Mgmt., 2003, 44(1): 109-123. 

[42] Chen L, Shen L, Sun F. Performance comparison for endoreversible Carnot and Brayton heat 
pumps. II. Steady flow cycles with finite reservoirs. Power System Engng., 1996, 12(5): 1-5 (in 
Chinese). 

[43] Wu C, Chen L, Sun F. Optimization of steady flow heat pumps. Energy Convers. Mgnt., 1998, 
39(5/6): 445-453. 



International Journal of Energy and Environment (IJEE), Volume 1, Issue 6, 2010, pp.969-986 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2010 International Energy & Environment Foundation. All rights reserved. 

986 

[44] Bi Y, Chen L, Sun F. Heating load, heating load density and COP optimizations for an 
endoreversible variable-temperature heat reservoir air heat pump. J. Energy Institute, 2009, 82(1): 
43-47. 

[45] Bi Y, Chen L, Sun F. Ecological, exergetic efficiency and heating load optimizations for 
irreversible variable-temperature heat reservoir simple air heat pump cycles. Ind. J. Pure Appl. 
Phys., 2009, 47(12): 852-862. 

 
 
 

Huijun Feng received his BS Degree from the Naval University of Engineering, P R China in 2008. He is
pursuing for his MS Degree in power engineering and engineering thermophysics from Naval University
of Engineering, P R China. His work covers topics in finite time thermodynamics and technology support 
for propulsion plants. He has published ten papers in the international journals.  
 

 
 
 

Lingen Chen received all his degrees (BS, 1983; MS, 1986, PhD, 1998) in power engineering and
engineering thermophysics from the Naval University of Engineering, P R China. His work covers a 
diversity of topics in engineering thermodynamics, constructal theory, turbomachinery, reliability
engineering, and technology support for propulsion plants. He has been the Director of the Department of
Nuclear Energy Science and Engineering and the Director of the Department of Power Engineering. Now,
he is the Superintendent of the Postgraduate School, Naval University of Engineering, P R China.
Professor Chen is the author or coauthor of over 1050 peer-refereed articles (over 460 in English journals) 
and nine books (two in English).  
E-mail address: lgchenna@yahoo.com; lingenchen@hotmail.com, Fax: 0086-27-83638709  Tel: 0086-27-
83615046 
  

 
 

Fengrui Sun received his BS Degrees in 1958 in Power Engineering from the Harbing University of
Technology, P R China. His work covers a diversity of topics in engineering thermodynamics, constructal
theory, reliability engineering, and marine nuclear reactor engineering. He is a Professor in the Department
of Power Engineering, Naval University of Engineering, P R China. Professor Sun is the author or co-
author of over 750 peer-refereed papers (over 340 in English) and two books (one in English).  
 

 
 


