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Abstract 

This paper presents a study on the vibration characteristic of open edge cracks graded moving shear beam. 

The material property gradient is based on the distribution of the power-law in the direction of the beam 

thickness. The vibration equation is obtained depending on the precept of Hamilton principle and resolved 

by the extension of Galerkin's approach. To represent the cracking in the beam, a rotational spring is used. 

The effects of the axial velocity, gradient index, and cracking parameters on vibration characteristics are 

observed. Furthermore, the shapes of the model are determined for simply supported cracked moving 

graded shear beam. The results show that the natural frequencies decrease with the rise in the axial velocity, 

the crack depth, and the material property index. The percentage of decrease in the natural frequencies as 

a result of increase in crack depth ratio is 40%. 

Copyright © 2021 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 

The advanced type of composite materials produced by the combination of two materials are dynamically 

graduated materials and the properties of the gradient material differ from the properties of the main 

materials of the component. This material is used in many engineering applications, such as rocket engine 

components, aerospace structures, turbine blade structures, fusion energy devices, defense industries [1]. 

In the mid-eighties of the last century, Japanese scientists first used this form of material, and it became 

the object of researchers' attention later on, and many researchers covered it. The vibration of a graded 

beam, which differs in its properties in the direction of thickness by relying on the law of force, was 

demonstrated by S. A. Sina et al. [2]. The vibration equation was obtained by applying the precept of 

Hamilton and resolved by the analytical solution. The concern of moving load applied to a gradient beam 

whose power-law properties change during the thickness direction was discussed by K. Rajabi et al. [3]. 

Also, the power-law form was used by F. Q. Zhao and Z. M. Wang [4], to represent the change of material 

properties through-thickness direction for the system of deploying graded beam. The motion equation was 

modeled using Euler theory and Hamilton’s precept and disband by the Galerkin's technique. The results 

clear up the improvement in the initial length of the FGM beam deployed would diminish the frequency 

of vibration and the beam amplitude. The increase in the cross-sectional height of the FGM beam deployed 

will cause the frequency of vibration to boost but has no effect on the amplitude.  
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The properties of the gradient material may change in one or two directions, such as axial or thicknesses 

directions, and this resulting gradient can be expressed using the power, exponential, and sigmoid laws as 

Aydogdu and Taskin [5], the properties of the gradient material differ through-thickness direction relying 

on the laws of power and exponential. Hamilton’s precept was used to derive the vibration equation of 

graded beam with the edge of simply supported. The characteristics of vibration rising with increasing the 

ratio of beam length to its height while decrease with the rise of gradient index.  Huu-Tai Thai and Thus 

P. Vo [6], in order to study the vibration of the graded beam that its properties differ in the direction of 

beam thickness, counted on the power-law, the different theory of higher-order shear deformation was 

used. The results explained that increasing the power-law index would decrease the FG beam's stiffness, 

resulting in an increase in deflections and a decrease in natural frequencies. M. Simsek [7], the properties 

of graded material change during bi- directions as depth and axial counted on the law of power. The 

theories of Euler and Timoshenko were used to model the vibration equation by applying the precept of 

Hamilton to study the beam buckling. This equation was resolved by the method of Ritz. In order to achieve 

the desired objectives, the buckling behavior can be managed by selecting the relevant gradient indexes as 

shown by the results. Y. S. Al Rjoub and A. G. Hamad [8] studied the vibration of the gradient beam, using 

Euler and Timoshenko models with H-H, C-C, C-F, and C-H end support. They used the transfer matrix 

to resolve the vibration equation. The impact of porosity that decreases the natural non-dimensional 

frequencies are critical in the volume fraction index taller than 1as indicated by the results. The decrease 

in non-dimensional natural frequencies is as the value increases in the volume fraction index. A. E. 

Alshorbagy et al. [9] used the approach of the finite element to resolve the vibration equation of graded 

beam modeled by the Euler theorem and Hamilton’s precept. The distribution of power-law was relying 

on to represent the gradient in the material properties through two directions as axial and thickness. Y Liu 

et al. [10], the gradient in the properties of material followed the law of exponential to represent it. 

Explained the impact of single delamination on graded beam. C. F. Lü et al. [11], the material properties 

differ in two axes (length and thickness) using exponential law. S. N. PADHI   et al. [12] adopted the 

sigmoid law to explain the gradient in the material properties of the graded beam.  

In addition, the cracked beam has been touched upon by several researchers. The effect of multiple cracking 

on the gradient beam was discussed by T. V. Lien et al. [13]. Modeling the kinematic equation was based 

on Timoshenko's theory. The results showed that an increase in the depth of the crack, as well as the amount 

of crack, causes the natural frequencies to decrease.  H. Ozturk et al. [14] examined the impact of the 

moving load on the cracked beam. As the crack depth expands, the natural frequencies of the cracked beam 

get smaller. In addition, when positioned at the unique points (nodes in mode shapes) along the beam, the 

crack does not affect the natural frequencies. E.C. Yang et al. [15] used the Continuous Beam theory to 

model the cracked graded beam. The transfer matrix method was used to resolve the vibration equation. 

The increase in crack depth leads to a decrease in the natural frequency ratio, while the increase in the 

slenderness and elasticity ratio leads to a rise in natural frequencies. T. YAN and J. YANG [16], the 

transverse moving load and compressive force axially affected the cracked graded beam. Due to the 

presence of edge crack, the dynamic deflection grows as well as the axial compressive load, the axial 

compression is much more affected than the edge crack. Sometimes, the crack is represented as linear or 

rotational spring or both. N. T. Khiema et al. [17] used Timoshenko's model to set up equations governing 

the motion of the cracked gradient beam in which the crack was represented as two linear and rotational 

springs. Y. Cunedioglu and S. Shabani [18] used a finite element approach to analyze the vibration equation 

of cracked graded beam with multi-layers. In mode shapes, the effects of phase position are more profound 

than the depth of the crack and crack location modifications. The nonlinear vibration of the cracked graded 

beam based on the Timoshenko model and the precept of Hamilton appeared in S. Kitipornchai et al. [19]. 

Rotational spring models are used to model the crack. The linear frequency is greatly reduced with an 

increase in crack depth, but the nonlinear frequency ratio and mode shapes are much less impacted by the 

change in crack depth.  

Muhannad Al-Waily [20] employed the analytical solution and finite element technique as numerical 

solution to resolve the vibration equation of pinned and clamped ends beam with crack which obtained 

utilizing Euler theory. The position of crack near the ends of beam has small influence on beam stiffness 

which make the beam frequency is high with compare the position of crack near the beam middle. In 

addition, the crack depth rising leads to drop in the beam stiffness which decrease the beam frequencies. 

Influences of flow velocity and angle of crack on the characteristics of pipe vibration and its flow with 

simple support end conditions were clarified by Muhannad Al-Waily et al. [21]. The results were obtained 

by experimentally and numerically using finite element approach. At certain crack depth, certain crack 
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position, and certain crack angle, the frequencies of pipe were drop as a result to increase in flow velocity. 

The change of crack angle from crack parallel to pipe to perpendicular on pipe make the influence of crack 

on pipe stiffness is increase which leads to decrease in pipe frequencies.  

Alborz Mirzabeigy et al. [22] studied free vibration of simply supported double-beam with crack. Euler 

and Winkler models were used to obtain an equation to find the natural frequencies of the beam, but the 

resulting equation is algebraically meaning that it needs a numerical solution as it does not explain the 

effect of the parameters on the frequencies, so Rayleigh's method was used to derive an explicit equation 

to find the natural frequencies. The impacts of crack depth and crack position on the generation of heat in 

the beam under the periodic load with S-S, C-C, and C-F boundary conditions were illustrated by Diyaa 

H. J. Al-Zubaidi et al. [23]. Euler theory was used to obtain the motion equation which solved utilizing 

analytically and numerically solutions such as finite element technique. The results showed the generation 

of heat in the beam is rise due to crack depth increasing, additionally, the approaching the site of the crack 

than the instant higher of the beam make the heat generation of the beam is rise. The influences of crack 

parameters on the beam vibration characteristics under harmonic load effect with pinned, clamped, and 

cantilever ends were addressed by Diyaa H. J. Al-Zubaidi et al. [24]. Finite element approach was 

employed to solve the vibration equation which found using Euler beam theory. The crack depth increasing 

leads to decrease the beam stiffness and beam frequencies, but beam deflection increase. The results 

illustrated also that the action for frequency harmonic load applied rise with increment the crack depth. 

There is also a lot of literature covering the subject of homogeneous and graded beam movement. In order 

to evaluate the motion equation of the graded beam with axially moving, Yusuf Yesilce [25], implemented 

the Differential Transform method. The results shows that the increase in the axial tensile force results in 

an increase in the natural frequency values under various boundary conditions. L. Q. Yao et al. [26], 

investigated the axially traveling inhomogeneous micro beam. Changjian Ji et al. [27] studied transverse 

vibration of graded moving Nano-beam. As seen in the results, the rise in axial velocity and the gradient 

indicator lead to a decrease in natural frequencies. In addition, Hu Ding et al. [28] used dynamic stiffness 

as a method to discuss the axially movement of homogeneous beams subjected to rotational and vertical 

springs at both ends of the beam. Jer-Rong Chang et al. [29] used the Rayleigh theory to model the axially 

moving beam and the equation of motion was solved using the process of finite elements. 

In this paper, a study of vibration behavior cracked axially movement graded beam based on the shear 

theory and Hamilton principles adopt. To solve the system's vibration equation, Galerkin's technique is 

used. The effects of several variables on the characteristics of the vibration, including crack width, crack 

location, axial speed, and material property gradient index, are observed. 

 

2. Theory  
A cracked axially moving graded beam is shown in Figure 1. The co-ordinates of the axial and thickness 

axes are expressed by X and Z. The length of the beam is expressed by the symbol L, while the height is h 

and the width is b. The crack parameters are represented as depth and position by symbols ɑ and cx , 

respectively. Pure ceramic is present on the upper surface of the beam, while pure metal is present on the 

lower surface. 
 

 

 

                      

                                                                                           

                                                                                                       

                               

                                              

                                                                                                                                                    

                                                                                                                                                   

                                                                                                                                                 

              
 

Figure 1. The cracked moving graded beam 

 

During the beam thickness, the properties of the gradient materials differed and depended on the law of 
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A graded beam volume fraction can be expressed as [30]: 
p

t
h

z
V 










2

1
            p0    (1) 

 

1 bt VV  (2) 

 

Where z is the distance to the mid-plane of the FG beam 









22

h
z

h
, 

2

h
 and 

2

h
 represented the 

thickness of beam at top and bottom, respectively, while p is defined as the index of gradient. 
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In which cE and mE represent the elasticity modulus of ceramic and metal, respectively.  

The displacements of shear FG beams can be obtained as [27] 
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Where ),,(1 tzxu and ),,(2 tzxu are axial and transverse displacements of beam, respectively. The 

transverse displacement of middle plane is ),( txw  while ),( tx represent cross section rotation angle.   

The normal strain and stress of FG shear beam are given as: 
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The shear strain and stress of FG shear beam are given as: 
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Where k represent the shear correction factor and its equal to 5/6 

The potential energy of Shear FG beam can be expressed as [31]:  
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Where  
A
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The actual position of neutral axis determined as [26]: 
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The variation of potential energy of shear FG beam can be expressed as: 
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The kinetic energy of shear FG beam can be expressed as [31]: 
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Where  
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The variation of kinetic energy of shear FG beam can be expressed as: 
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2.1 Hamilton’s principle  

The general form of Hamilton's principle is given by [31] 
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Substituting the energy terms equations (10) and (13) into Hamilton's principle, integrating by parts and 

setting the coefficients of equal to zero, the vibration equations of axially moving functionally graded shear 

beam are written as: 
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From equation (15) 
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Substituting equation (17) into equation (16), we get 
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The final governing equation of shear FG beam is given as: 
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In this work, simply supported boundary conditions were used, 
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By substituting the dimensionless parameters into the equation (19) and boundary conditions (20). The 

non-dimensional governing equation can be written as:  
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And boundary conditions in dimensional form written as: 
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2.2 Crack Modeling   
We can derive the average strain energy via the theory of fracture mechanics by implementing a local 

flexibility model such as [32] 
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Where  

S: Average strain energy; g: Stress intensity factor; and tipE : Modulus of elasticity at the crack tip of beam 
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Where M,  and ɑ are the bending moment, strain energy, deflection due to bending, and the depth of the 

crack, respectively. 

The resulting beam deflection due to the bending can be expressed as the following relationship: 
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compliance equation as: 
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The magnitudes of the crack can be written as [33]: 
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2 zfhc                                                                                                                                (27) 

Where c is depend on gradient index and crack depth ratio and )(zf  is a function of the crack depth ratio 

(z=a/h) and defined as below: 

1098

765432

6.197556.401063.47

0351.332948.209736.95948.404533.16272.0)(
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zzzzzzzf
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                              (28)                                                                                                     

In case of cracking, the beam is composed of two segments, as shown in the below Figure 2. 

 

 
Figure 2. The crack representation as a rotational spring. 

 

After dividing the beam into two parts, the first part is integrated from 0 to cx while the second part is 

integrated from cx to L. Thus, the governing equations of cracked FG beam with axial motion are:   

At cxx 0  

2 1 

 

L 
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And at Lxxc   
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The dimensionless governing equations of cracked FG beam with axial motion are:  
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2.3 Solution Method  

The general form of Galerkin's equation is given as [34]: 


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)()(),(                                                                                                                               (31) 

Where )(r
 and )(Tqr

represents the shape function and generalized coordinates, respectively.  

The mode shape function of the cracked FG beam can be expressed as the sum of the formation function 

of the un-cracked FG beam and the polynomial of (ξ) [35, 36]:   
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The continuity conditions and compatibility of the cracked FG beam at c  are given by 

)()( 21 cici   ;       )()( 21 cici     ; )()( 21 cici   ; 

)()()( 212 cicici c                                                                                                                             (33) 

By coupling the boundary in equations (23-a) & (23-b) and compatibility conditions in eq. (32) and 

equation (33), we get 
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By substituting equation (31) into equations (30-a) and (30-b), integration this equations and multiplying 

by s , the resultant vibration equation in matrix form is given as 

      0 qKqCqM                                                                                                                                 (35) 

  

Where  M  is the mass matrix,  C  is the damping matrix and  K  is stiffness matrix of cracked axially 

moving shear FGM beam and their elements are given as follows: 
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By solving the eigenvalue of equation (35), the frequencies of the system can be observed. Obviously, by 

letting the parameter of s  to zero in the Equation (22), the vibration equation of the FGM Euler-Bernoulli 

beam will be obtained. Furthermore, by neglecting the shear factor, and axial motion in equation (35), the 

vibration equation of cracked FG cracked Euler-Bernoulli beam will be obtained. 

 

3. Results  

The beam used in this paper is made of functionally graded material that it is composed of ceramic and 

metal. Pure ceramic sits on the upper surface of the beam, while pure metal sits on the lower surface. The 

relevant parameters and the material properties are given as L=1m, b=0.1m, h=0.1m, as in Table 1. 

 

Table 1. The graded material properties. 

 

Material  Elasticity modulus  Density  

Steel  210GPa 3/7800 mkg  

Alumina  390GPa 3/3960 mkg  

 

4. Validation 
In this sub-section, we will compare the results obtained through this work at V=0, L/h=100,

4
m

c
ratio

E

E
E , 1

m

c
ratio




 , 0s with a result for graded Euler beam in ref. [37], as shown in 

Table 2.  

 

Table 2. Validity test of the results of this work. 

 

 

p 

ω1 ω2 ω3 

Present  Ref. [37] Present  Ref. [37] Present  Ref. [37] 

0 19.738 19.738 78.944 78.943 177.59 177.58 

0.1 18.825 18.825 75.290 75.290 169.37 169.36 

1 14.638 14.638 58.546 58.545 131.70 131.70 

10 11.948 11.948 47.787 47.787 107.50 107.50 

 

Table 3 shows the influences of the crack depth ratio and the location of crack on the first three mode 

shapes, as it is observed that the deeper the crack, the lower the natural frequencies. As the crack location 

is shifted from the edges to the center of the beam, the natural frequency varies and gives its maximum 

value at the center of the beam, i.e. 50% of the complete length. The beam is simply supported on both 

ends, so a symmetrical behavior is observed on both sides of the beam with respect to center of the beam. 
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Table 3. the effect of crack depth & crack location on the natural frequencies. 

 

 

cx  

 

ωi 

ɑ/ℎ  

0.1 0.2 0.3 0.4 0.5 0.6 

 

 

0 

ω1 12.8402 12.8402 12.8402 12.8402 12.8402 12.8402 

ω2 51.8834 51.8834 51.8834 51.8834 51.8834 51.8834 

ω3 113.8202 113.8202 113.8202 113.8202 113.8202 113.8202 

 

 

0.3 

ω1 12.7772 12.5634 12.0788 11.0913 9.3232 6.7796 

ω2 51.2493 49.4895 46.7398 43.4715 40.6811 39.4220 

ω3 112.4290 109.2212 105.6989 103.3529 103.1309 105.2710 

 

 

0.5 

ω1 12.6692 12.1659 11.2626 9.8633 7.9403 5.6574 

ω2 51.8845 51.8841 51.8751 51.8194 51.6230 51.1060 

ω3 112.2847 108.7890 105.1198 103.4017 106.0681 116.2855 

 

Figure 3 illustrates the first and second natural frequencies ratios of simple support cracked FG beam with 

axial motion at u=2, p=1, L/h=10. It turns out that the shapes in (a) & (b) are symmetrical. In (a), when the 

crack location increases, the natural frequencies are decreased until reach xc= 0.5, then the frequencies are 

increases in the second part of the beam until reaches the end of the beam. In (b), also the frequency ratios 

decrease with the increase in the location of the crack and then increase to the maximum value at xc= 0.5, 

after that, it begins to decrease. Besides, it is obtained that increasing the slit depth leads to a decrease in 

the natural frequency ratios due to the decrease in the beam stiffness, which leads to an increase in the 

beam deflection and thus reduces the natural frequencies.  
 

 
(a) 

 

 
(b) 

 

Figure 3. The relationship between the natural frequencies ratios of FG beam and the crack location (xc) 

with different crack depth (a/h). 
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In Figure 4, the relationship between the frequencies ratio against the power index. We see that increasing 

the gradient indicator causes the reduction in the fourth frequency ratios when the axial speed u=2, 

slenderness ratio δ=0.1, and the crack location xc=0.2 for simple support ends. Also, the crack depth 

increases lead to a decrease in the frequency ratios.   

 
 (a) 

 

 
 (b) 

 

 
 (c) 

 

Figure 4. The relationship between the natural frequencies ratios of S-S FG beam and the gradient 

indicator (p) with different crack depth ratio (a/h) at u=2, L/h=10, xc = 0.2. 

 

The effect of the axial velocity on the ratios of the three frequencies is observed in Figure 5. From these 

figures, it is evident that the ratios of the three frequencies have decreased due to the increase in the axial 

velocity. 
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 (a) 

 

 
 (b) 

 

Figure 5. The relationship between the natural frequencies ratios of S-S FG beam and the crack location 

with different axial speed at p=1, L/h=10, a/h=0.2. 

 

5. Conclusions   

In this work based on the shear model, the cracked moving simply supported graded beam is investigated. 

Hamilton's principle is used to derive the equation of motion and then solved by the method of Galerkin's. 

Crack depth, crack position, axial velocity and gradient index effects are discussed. In this study, the main 

conclusions are summarized as follows:  

1. The increasing of the crack depth causes a decrease in the natural frequencies for different crack 

positions,   the minimum first natural frequency is in the middle of the beam and the maximum occur at 

the ends of the beam, while the minimum second natural frequency is at ¼ L and ¾ L of the beam and the 

maximum occur at the middle and ends of the beam.  

2. Increasing the speed of the moving beam leads to a decrease in the natural frequencies. 

3. Increasing the graded material's gradient index reduces the natural frequencies for various crack 

locations. 

 

Parameters  Meaning   

ɑ Crack depth 

b Beam width 

h Beam thickness 

L Beam length 

cx  Crack position  

(S-S) Simply supported boundary condition  

(C-C) Clamped-clamped boundary condition 

(C-F) Clamped-free boundary condition 

FGM Functionally graded material 
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c , m  Density of ceramic and metal, respectively 

V Axial velocity 

cE , mE  Elastic modulus of ceramic and metal, respectively 

p Property gradient index 

b  Actual position of neutral axis  

k  Shear correction factor 

s  Shear factor 
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