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Abstract 
During the last few years, there has been a plethora of research and development in the area of solar 
photocatalysis. The aim is to understand the fundamental processes and enhance photocatalytic 
efficiencies especially for air, soil and water pollution control. Municipal waste water is limited by 
continual organic water pollutants and micro-organisms that are not removed by conventional 
mechanical and biological treatment. In this overview of the most recent paper, studies focused on the 
treatment of municipal wastewater (containing organic compounds) by photocatalysis and the effects of 
various parameters such as pH, light intensity, Advance oxidation method etc. have been studied It can 
be concluded that the photocatalysis process is suitable for the treatment of drinking water, municipal 
and industrial wastewater. Some studies on the economic analysis of photocatalytic systems are also 
included. 
Copyright © 2011 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
In recent years, it has been found that solar photocatalytic detoxification is one of the promising methods 
for the disinfection and treatment (colour, odour, COD etc.) of the municipal wastewater. The 
combination of light and catalysts has proven very effective for water purification [1]. Conventional 
water and wastewater treatment processes have been long established in removing many chemical and 
microbial contaminants of concern to public health and the environment. However, the effectiveness of 
these processes has been increasingly challenged with the identification of more and more contaminants, 
rapid growth of population and industrial activities and diminishing availability of water resources [2]. 
Solar heterogeneous or homogeneous photocatalytic method is suitable for the municipal wastewater of 
small communities and villages, where there is a wide variation of the population between winter and 
summer seasons. This variation leads, during the year, to wastewater effluents with very different 
hydraulic and organic load, thus causing problems to the biological treatment plants and leading 
therefore to effluents of low quality [2]. The treatment technology, including advance oxidation process 
(AOPs), and solar irradiation, the emphasis was placed on their basic principles, applications, and new 
technology developments. Advantages and disadvantages of these technologies are compared to 
highlight their current limitations and future research needs [3]. 
The major applications investigated for this technology are colour removal; [4-9] reduction of COD 
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(chemical oxygen demand); [10,11] mineralization of hazardous organics;[12-15] destruction of 
hazardous inorganic such as cyanides; [16] treatment of heavy metals; [17,18] degradation of harmful 
fungicides, herbicides, and pesticides; [19-21] purification and disinfection of water; [22,23] destruction 
of malodorous compounds; [24] decontamination of soil; [25] decontamination of indoor air; [26,27] and 
destruction of cancer cells; [28, 29]. The efficiency of TiO2, photo-fenton and the modified photo-fenton 
(ferrioxalate) reagent in the presence of solar irradiation was evaluated by the organic content reduction 
(dissolved organic carbon, DOC) of a municipal wastewater [2]. 
The present review aims are to develop a method which takes care of energy saving & water 
recycle/reuse together. Photocatalytic detoxification will be investigated through laboratory experiments 
as an alternative to conventional secondary treatment. It is very important to develop processes for the 
clean-up of polluted water [1]. This study was to utilize different chemical oxidation method for reducing 
refractory organic matter in municipal wastewater [30]. Moreover, to the best of our knowledge the 
application of solar detoxification for the zero effluent discharge at household level has not yet been 
investigated [1]. In conventional treatment methods, lot of energy is wasted and also they generate 
harmful by-products. Instead of these, photo catalytic oxidation method can be used as 
(i) It is eco-friendly, very less sludge generation, energy efficient and sustainable method. 
(ii)  It does not create any harmful by-products 
 
1.1 Solar ultraviolet radiation potential in India 
Earth receives 1.7x1014 kWh, meaning 1.5x1018 kWh per year of solar radiation, which is approximately; 
28000 time the world energy consumption per year [31]. In a tropical country like India ((8º4”-37º6” N 
latitude), highest level of global solar UV radiation is received. Adequate amount of Solar UV radiation 
is received for almost 10 months a year. Average mean peak irradiance of Solar UV- A is 47 W/m2 - 66 
W/m2 and average mean peak irradiance of Solar UV- B is 0.195 W/m2 - 0.3384 W/m2 [32]. Nearly, 95-
98% of the sun ultraviolet radiation reaching the earth’s surface is UV- A. Only 2-5% of UV light at the 
earth surface is solar UV - B. Practically all of UV - C and much of UV- B is absorbed by the ozone and 
the atmosphere. 
According to Blanco et al. [33] the UV radiation represents between 3.5% and 8% of the solar spectrum, 
fluctuating with the presence of clouds and increasing with altitude. The percentage of global UV 
radiation (direct + diffuse), with regard to the global, generally increases when the atmospheric 
transitivity decreases, mainly due to clouds, but also to aerosols and dust [34]. In fact, the average 
percentage of UV with respect to total radiation on cloudy days is upto 2% higher than values on clear 
days. Since the UV radiation is not absorbed by water vapor, as much as 50% of this, or more in very 
humid locations or during cloudy or partly cloudy periods, can be diffused. The diffuse component can 
make up to 50% of the total available UV light even on a clear day because the shorter wavelengths UV 
photons are more readily scattered within the atmosphere. Solar energy available in various regions is 
typically 8.3% ultra-violet (200-400 nm), 38.2% visible (400-700 nm), 28.1% near infra-red (700-1100 
nm) and 25.4% infrared/far-infrared portion. Figure 1 shows the ultraviolet spectrum on the earth 
surface. 

 
 

Figure 1. Ultraviolet spectrum on the earth surface [35] 
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2. Photocatalytic reactors 
Photocatalysis has been a subject of increasing interest during the last twenty year. It has various 
potential applications such as metal recovery, abatement of NOx, synthesis of ammonia but the recent 
development have been induced mainly by the application to the abatement of organic pollution both in 
the aqueous and the gaseous phase. This development participates to the general concern about the 
environment and the increasing constraints on the toxicity of wastes [36].  
As the compound parabolic concentrators (CPCs) do not concentrate light inside the photoreactor, the 
system is outdoors and is not thermally insulated; the maximum temperature achieved inside the reactor 
during the experiments is 45°C. Solar ultraviolet radiation UV was measured by a global UV radiometer 
(KIPP & ZONEN, model CUV3), mounted on a platform tilted 37° (the same angle as the CPCs), which 
provides data in terms of incident WUVm2. This gives an idea of the energy reaching any surface in the 
same position with regard to the sun. With equation (1) combining of the data from the experiments of 
several days and their comparison with other photocatalytic experiments is possible [37]. 
 

 (1) 

 
where, tn is the experimental time for each sample, UVG,n is the average UVG during ∆tn, ACPC is the 
collector surface, VTOT is the total plant volume and QUV,n is the accumulated energy (per unit of volume 
in kJL-1) incident on the reactor for each sample taken during the experiment. 
 
2.1 Type of photocatalytic reactors 
In recent year several reactors for the solar photocatalytic treatment have been developed and tested. 
Both type of solar reactors exhibit specific advantages and disadvantages, which are summarized in 
Table 1. 

 
Table 1. Comparison between non-concentrating and concentration system used in solar photocatalytic 

application [38-41] 
 

Non-concentrating collector Concentrating collector 
Advantages Disadvantage Advantages Disadvantage 
Direct and diffuse radiation Laminar flow (low mass 

transfer) 
Turbulent flow Only direct radia-

tion 
No heating Vaporization of reacta-

nts 
No vaporization of com-
pounds 

High cost (sun 
tracking) 

Low cost and fewer mainte-
nance requirements 

Reactant contamination 
and mass transfer 
problems in photocata-
lysis 

More practical use of a 
supported catalyst as 
less is needed per unit 
collector surface 

Low optical effici-
ency and usually 
expensive 

 
High optical efficiency Weather resistance, 

chemical inertness and 
ultraviolet  transmission 

More practical use of a 
supported catalyst 

Low optical effici-
ency 

Hight quantum efficiency  
(r = k I with TiO2) 

Water overheating Smaller reactor tube area Low quantum 
efficiency (r = k 
I<1 with TiO2 

Since recombination of e-/h+ 
is lower than in a concen-
trating system beca-use the 
photonic density is lower, 
they have both high optical 
efficiency and high quantum 
efficiency 

Reactant contamination There is no evaporation 
of volatile compounds 

Lower optical 
efficiency and 
quantion of e-/h+ 
than in non-
concentration syst-
ems Possible 
water overheating 
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2.1.1   Parabolic trough reactor (PTR)  
A PTR concentrates the parallel (Direct) rays of the photocatalytically active ultraviolet part of the solar 
spectrum by a factor of 30 to 50 and can be characterized as a typical plug flow reactor. In the 
wavelength range which can be used for the excitation of TiO2 (UV-A, 300-400nm) the diffuse [Edif (300-

400) =24.3 W/m2] and direct [Edir (300-400) =25.0 W/m2] portion of the solar radiation (AM 1.5) reaching the 
surface of the earth are almost equal [42-44].   
 
2.1.2 Thin-film-fixed-bed reactor (TFFBR) 
Solar photons can also be used without further concentration in a fixed bed reactor system. The TFFBR 
employs both the diffuse portion of the solar radiation. Coating of the plate was achieved using P25 TiO2 
from Degussa followed a patented method [43-46].  
 
2.1.3 Double skin sheet reactor (DSSR) 
A new kind of non concentrating reactor is DSSR [47-49]. This type of reactor employs both the direct 
and diffuse portion of the solar radiation, but after the degradation process the photocatalysis has to be 
removed from the liquid. 
 
3. Solar photocatalytic degradation of contaminants 
Finally Photocatalysis mineralizing the contaminants into carbon dioxide, water, and inorganic, practical 
applications of solar technologies have been studied and developed most intensively for heterogeneous 
TiO2 photocatalysis and homogeneous photo-Fenton. There is no general rule at all, each case being 
completely different [39, 40]. 
In general, the types of compounds that have been degraded include alkanes, haloalkanes, aliphatic 
alcohols, carboxylic acids, alkenes, aromatics, haloaromatics, polymers, surfactants, herbicides, 
pesticides, and dyes. Equation 1generally holds true for a general organic compound equation (2) of 
CnHmOp [41]. 
 

 (2) 
 
Apart from developments on increasing photocatalytic reaction rate, the most important progress in solar 
photocatalysis, in recent years has been related to combination with biological treatment and the 
application of toxicological analytical methods. Contaminant treatment, in its strictest meaning, is the 
complete mineralisation (TOC=0) of the contaminants, but photocatalytic processes only make sense for 
hazardous non-biodegradable pollutants. [40] Therefore, biologically recalcitrant compounds could be 
treated with photocatalytic technologies until biodegradability is achieved. Subsequently, the water can 
be transferred to a conventional biological plant. Such a combination reduced treatment time and 
optimised the overall economics, since the solar detoxification system can be significantly smaller [50, 
51]. As shown in Figure 2, the active component disappears after several minutes of irradiation, but TOC 
remains after several hours. Therefore, the use of AOPs as a pre-treatment can be justified if the 
intermediates resulting from the reaction (more oxidized compounds, such as carboxylic acids, alcohols, 
etc.) are readily degraded by micro-organisms [52, 53]. The treatment, based on the photo-Fenton 
reaction [54-57], mineralizes 80% of the TOC in the rinse water in a batch process. 
 
4. Effects of operating parameters 
The rate of photo mineralization of an organic compound depends on the nature of the photocatalyst, 
catalyst loading, reactor configuration, concentration of the compound, wavelength, radiant flux, pH and 
advance oxidation processes in presence of interfering adsorbing species and mass transfer (especially 
for immobilized TiO2).  
 
4.1 Effect of pH 
pH of the aqueous solution significantly affects TiO2 including the charge of the particle and the size of 
the aggregates it forms. The pH at which the surface of an oxide is uncharged is defined as the Zero Point 
Charge (pHzpc), which for TiO2 is around pH 7 [58]. K. Okamoto et al. [59] suggested a pH of 3.5 as 
optimal for the degradation of phenol (with reduced anatase) in contrast to another study on alkaline pH 
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conditions, which concluded that alkaline conditions are necessary for the elimination of phenols and 
COD [60]. Mean particle-size measurements (presented in Figure 3) have been found to be constant at 
pH 7. 3 increase to 2-4 µm when dispersion reaches pHzpc. In contrast, these variations in particle size 
could be an advantage for separating the catalyst from water (by sedimentation and/or filtration) at 
completion of photocatalytic treatments [58]. 
The pH of an aqueous solution significantly affects all metal oxide semiconductors, including the surface 
charge on the semiconductor particles, the size of the aggregates formed and the energies of the 
conduction and valence bands. The adsorption of the contaminants and thus the rates of degradation will 
be maximum near the zero point charge of the catalyst. The pH value of zero point charge for P25 has 
been measured as 6.25 [59]. The pH of a solution is an important parameter in the photocatalytic 
degradation of organic compounds due to the fact that pH influences the surface change of the 
semiconductor, the photoredox process. The decolourization rates under UV/H2O2 decreased with 
increasing pH [60, 61]. In alkaline condition, H2O2 will decompose into water and oxygen rather than 
hydroxyl radicals [61, 62]. This causes the lower decolourization rates of azo dyes at higher pH values 
because the concentration of OH- is reduced under these conditions. The decolourization rate was 
increasingly less effective at pH values higher than 8. While acidic conditions achieve a more effective 
decolourization, the effect of pH values in the range of 8 to 11 is still relatively limited, but the 
reaction rate and efficiency is certainly dramatically reduced at a pH of 12 [63]. The interfacial energetic 
at acidic and alkaline pH were also compared Figure 4. 
 

 
 

Figure 2. Degradation of a model contaminant (2-amino-2-phenyl-propionic acid, C0=500 mg/L) 
dissolved in water by photo-Fenton at Fe=20 mg/L [38] 

 

 
 

Figure 3. Mean particle size of TiO2 (P-25) suspended in water versus pH. [TiO2]=0.2 g/L [58] 
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Figure 4. Surface-band energetics at TiO2 and solution redox levels for pH 0 and 10 cases [64] 
 

4.2 Effect of light intensity and wavelength 
Considering the unidirectional solar irradiation, the collection of radiation in solar reactors is carried out 
in two ways [65]. Use of a fixed reactor where a large surface of the solution or suspension is exposed to 
the sun: trickling on a flat plate supporting a catalyst mesh, flowing a sinuous path [66], flowing through 
an array of pipes so as to increase the residence time, or through a flat fixed-bed [67], or exposure within 
a tank such as those designed for water stations, which can be equipped with impellers designed to 
ensure a good mixing and aerating of the slurry. More elaborate system (Fresnel lenses, holographic 
collector) can be used on a reactor of small dimension. When using a focusing system, the volume of 
fluid is reduced, this makes it easier to build. It is also a necessity as the whole system (collector + 
reactor) must be placed on a motorised support so as to track the sun. However, it leads to a high 
irradiation flux, which may reduce the quantum yield of degradation. In addition, depending on the 
weather, an important fraction of the sunlight can be diffuse instead of direct, which reduces the 
efficiency of the focusing system [68].  
Some studies have also reported increased efficiency with UV-C radiation than UV-A for the 
degradation of certain organic materials [69, 70]. Direct photolysis and the higher probability of trapping 
of electron-hole pairs with shorter wavelength excitation were thought to be the possible reasons for such 
an effect. It is estimated that only 5% of the incident solar irradiation is of use for the TiO2   band gap 
photocatalytic reaction. This significantly limits its practical application. Therefore, modification of TiO2 
photocatalyst to enhance light absorption and photocatalytic activity under visible light irradiation is the 
subject of recent research [71]. One such parameter is the effect of ultraviolet light intensity on the 
observed rate of pollutant destruction.  
At low light intensity and correspondingly low carrier concentrations, the rate of oxidation of a particular 
compound is proportional to light intensity, while at higher light intensity the rate is dominated by 
second-order charge carrier recombination and has a square-root dependence on light intensity [29, 72-
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75]. The transition from one regime to the other depends on the photocatalyst material, but is typically 
above 1 sun equivalent (7x10-5 Einstein’s m-2 s-1). This transition depends on the (immobilized) catalyst 
configuration and on the flow regime in the photoreactor, and varies with each application [76]. The 
optimal light power utilization corresponds to the domain where the destruction rate is proportional to 
light intensity. 
Several studies in the literature deal with the optimal concentration of TiO2 slurries, with can from 0.01to 
2 g/L. almost all of them well known titanium Degussa P25, recognized as the most efficient from of 
titanium dioxide. Obviously the optimal catalyst concentration depends on a number of additional 
parameter, mainly on the design of the photoreaction and light intensity Table 2.  
 

Table 2. Optimal concentration of TiO2 for disinfection under different experimental conditions 
  

Process description Photocatalysis used Source of light Reference 
Cr (VI) reduction TiO2 Degussa P-25 365 nm black blue fluorescent 

UV lamp 
[77] 

Cr (VI) reduction TiO2 Degussa P-25 150 W Medium pressure 
mercury lamp 

[78] 

Photoreduction of Cu 
(II) 

TiO2 Degussa p-25 Fluorescent black light bulbs [79] 

Microorganism 
inactivation 

TiO2 Degussa 0.1 (g/l) UV sunlight: 20 W/m2 [80] 

aqueous organic 
contaminant 

TiO2 Degussa 0.05 (g/l) UV solar light collected by a 
CPC type collector: 30 W/m2 

[81] 

Microorganism 
inactivation 

TiO2 Degussa 0.5 (g/l) Lamp: 1000 W/m2 (0.5% UV-C, 
7% UV-A.B) 

[82] 

Microorganism 
inactivation 

TiO2 Degussa p-25 1.0 (g/l) UV Solar Light: 35 W/m2 [83] 

Microorganism 
inactivation 

TiO2 Degussa p-25 1.0 (g/l) Black light lamp: 45 W/m2 [84] 

Microorganism 
inactivation 

TiO2 Degussa p-25 1.0 (g/l) UV lamp: 67.9 E/sm2 [85] 

ZnO TiO2 Degussa p-25 - [86] 
 

4.3 Effect of H2O2 dosage 
UV/H2O2 process is efficient in mineralizing organic pollutants. A disadvantage of this process is that it 
cannot utilize solar light as the source of UV light due to the fact that the required UV energy for the 
photolysis of the oxidizer is not available in the solar spectrum [87]. Different concentrations of H2O2 
(100, to 3000mg/l) were added to study the effect of H2O2 concentration on the decolourization rate. The 
removal rate increased with increasing initial concentration of H2O2. However, as the initial 
concentration of H2O2 reached a certain value, the increase in decomposition rate became less. The 
decolourization rate was slow at low H2O2 concentration, as the formation of hydroxyl radicals was 
insufficient. At higher H2O2 concentration, more OH- was produced leading to a faster oxidation rate. 
However, these free radicals preferred to react with the excess of H2O2 rather than with the dye [88, 89]. 
Hydroperoxyl radicals (HO2

.) equation (3, 4, 5) as the competitive reaction product are much less 
reactive than OH- and do not seem to contribute to the decolourization of RR195A. 
 

  (3) 
 

  (4) 
 

 (5) 
 
H2O2 with the initial concentration of 300 to 900 mg/L is suitable for the decolourization of RR195A 
using UV/H2O2 system as it gave a high decolourization rate. By adding 300 to 900 mg H2O2/L, the 
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decolourization was about 99-100% at 30 minutes of irradiation. The most favorable initial H2O2 
concentration that was observed for the optimum decolourization of RR195A was 300 mg H2O2/L.  
 
4.4 Effect of photo-fenton’s dosage  
The presence of oxalate in equation (6) the Fe3+/H2O2 system leads to an additional improvement of the 
photocatalytic efficiency [90]. Although it is well known for some time that Fenton reagent, a mixture of 
Fe2+ salts with equation (7) hydrogen peroxide (H2O2), can easily oxidize organic compounds, it has been 
applied for water and soil treatment only during the last years [91-93]. The addition of other powerful 
oxidizing species, such as equations (8) and (9) H2O2 or sodium peroxydisulfate (Na2S2O8) to TiO2 
suspensions, is a well-known procedure and in many cases lead to an increase in the rate of photo-
oxidation [94-96].  
 

 (6) 
 

  (7) 
 

 (8) 
 

 (9) 
 
The investigation on COD removal from oil recovery wastewater using fenton process, [97] reported that 
86% reduction of COD was achieved for H2O2 to Fe2+ mass ratio equal to 8.7 (w/w). 
 
5. Economic analysis of solar photocatalysis system 
Although the process of solar detoxification was very effective, the economic viability is not yet 
favorable for some application [98, 99]. The cost of wastewater treatment using solar detoxification 
systems depends on several parameters, i.e. rate constant, reactor type, catalyst and pre & post–treatment 
costs [100]. The authors reported an economic analysis of this technology for future application not only 
to solar photocatalytic disinfection, but also to decontamination of organic pollutants [38]. 
 
5.1 Energy consumption 
AOPs based on artificial light may be associated with increased operating cost, a major fraction of which 
is related to energy consumption see equation (10).  J.R. Bolton et al. [101] introduced the concept of 
specific electric energy consumption per unit mass of pollutant (e.g. COD) degradation (EEM): 
 

 (10) 

 
where V is the effluent Volume in liters in liters, t is the treatment time in hours, P is the lamp power in 
kW, CODo and COD is the concentration in g/l before treatment and after treatment time t, respectively. 
 
6. Conclusion 
To the summarize this review, the following conclusions can be made: 
(i) This technique can be used effectively for the purification and disinfection of municipal wastewater. 
(ii) Various designs of photocatalytic reactors, using both solar and artificial light, have been proposed. 

The solar–based reactors should be chosen according to the climatic conditions of the location and 
economic feasibility of the reactor. 

(iii) The photo-Fenton experiments were considerably faster than those with TiO2, but a detailed 
experimental analysis has to be made in order to arrive at a conclusion concerning the most 
appropriate method for application.  

The use of solar light, combined with the simple technology required for this method, can offer 
economically reasonable and practical solutions to the processing of municipal water were solar intensity 
is easily available. 
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