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Abstract 
The generalized radiative heat transfer law [ ( )nTq ∆∝ ] is introduced into a model external combustion 
engine with a movable piston, and effects of heat transfer laws on the optimizations of the engine for 
maximum work output are investigated in this paper. Numerical examples for the optimizations with 
linear phenomenological ( n 1= − ), Newton’s ( n 1= ), square ( n 2= ), cubic ( n 3= ) and radiative ( n 4= ) 
heat transfer laws are provided, respectively, and the obtained results are compared with each other. The 
results show that work output and efficiency of the optimal fully cyclic operation and optimal semi-
cyclic operation decrease with the increase of heat conductance, and the work output, compression ratio 
and efficiency of the optimal semi-cyclic operation are larger than those of optimal fully cyclic operation. 
Although all of the curves of volume versus time of the optimal fully cyclic operation and the Euler-
Lagrange ( E L− ) arcs of the optimal semi-cyclic operation are nearly sinusoidal and consist of three 
stages with the five heat transfer laws, the curves with different heat transfer laws are different. 
Copyright © 2011 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
An important problem in Finite Time Thermodynamics (FTT) or Entropy Generation Minimization 
(EGM) [1-10] is how to deal with the time dependence of process variables and parameters, i.e., how the 
dynamics of a system evolve during a process. In this case, the process evolves along an undetermined 
path, but may be subject to some constraints and bounds such as initial and final conditions. In order to 
determine performance limits for such systems, one has to find the thermodynamic path which 
extremalizes a given performance measure, which leads to an optimal configuration problem. The 
optimal control theory or Euler-Lagrange formalism can be applied to solve such problem. 
The dramatic recent increase in the price of energy has spurred much interest in the investigations on 
different kinds of engines. Determining the time-dependent piston motions of engines, which is an 
optimal configurations problem, can improve the efficiency and power, and many scholars have paid 
great attentions on such investigations for Otto cycle engine [11, 12], Diesel cycle engine [13, 14], 
irreversible light-driven engine [15-17], irreversible heat engine with distributed working fluid [18, 19], a 
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class of irreversible internal combustion engines [20] and adiabatic internal combustion engine [21-24]. 
In solving such problems, due to that the only controllable variable is the volume of the cylinder which 
can be adjusted by moving the piston, the aim of such problems is to determine the optimal piston 
motions for extremalizing a given performance measure. Once the optimal piston motions have been 
determined, there are in fact several ways of achieving these pathways of which we point out just two: 
one solution to transform the optimized paths is the use of an electrical coupling [3], another completely 
different mechanical way is applying a contoured plate to guide the piston on the desired path.  
Besides the objects studied in Refs. [11-24], the irreversible expansion process of ideal gas inside a 
heated cylinder with a moveable piston is also a classic object in the analysis of the optimal piston 
motions. Band et al. [25, 26] first established the model of the irreversible expansion process, and further 
investigated the optimal configurations of the process for maximizing the work with Newton’s heat 
transfer law [ ( )q T∝ ∆ ]. The obtained results showed that the optimal expansion consists of, at most, 
three stages. In addition, the optimal configurations of the expansion subject to eight different 
constraints, including constrained rate of change of volume, unconstrained final volume, constrained 
final energy and final volume, constrained final energy and unconstrained final volume, consideration of 
piston friction, consideration of piston mass, consideration of gas mass and unconstrained total time, 
were discussed respectively. Band et al. [27] further applied the results obtained in Refs. [25, 26] to a 
model external combustion engine with Newton’s heat transfer law, and found that the optimal motion of 
the engine contains fully cyclic operation and semi-cyclic operation, and once the initial steady-state 
temperature is ensured, the optimal motion is changed into the fully cyclic operation from the semi-
cyclic operation. Salamon et al. [28] and Aizenbud and Band [29] further investigated the optimal 
configurations of the expansion process for maximizing power output [28] and the optimal 
configurations for maximizing work output with fixed power output [29] with Newton’s heat transfer 
law. Aizenbud et al. [30] further applied the results obtained in Refs. [25, 26] to a model internal 
combustion engine with Newton’s heat transfer law. In all of the investigations [11-30], the heat transfer 
between the working fluid in the cylinder and the environment obeys the Newton’s heat transfer law. 
Thus, such investigations can be expanded by introducing different heat transfer laws into the optimal 
configurations problems, such as the linear phenomenological heat transfer law [ 1( )q T −∝ ∆ ], the 
radiative heat transfer law [ 4( )q T∝ ∆ ], the generalized radiative heat transfer law [ ( )nq T∝ ∆ ], the 
generalized convective heat transfer law [ ( )mq T∝ ∆ ], the complex generalized heat transfer law 
[ ( ( ))n mq T∝ ∆ ] and the convective-radiative heat transfer law [ 4( )q T T∝ ∆ + ∆ ]. Effects of heat transfer 
law on the optimal piston motions for different engines has been investigated, including the Otto cycle 
engine [31, 32], the Diesel cycle engine [33, 34], the irreversible light-driven engine [35], the irreversible 
heat engine with distributed working fluid [36] and a class of irreversible internal combustion engines 
[37]. Different heat transfer laws has also been introduced into the optimal configurations problems of 
the irreversible expansion process of ideal gas inside a heated cylinder with a moveable piston. Chen et 
al. [38], Song et al. [39] and Chen et al. [40] determined the optimal expansion when the heat transfer 
between the working fluid and the external heat bath obeys, respectively, the linear phenomenological 
[38], the generalized radiative [39] and convective-radiative [40] heat transfer laws. In Ref. [39], the 
first-order approximate analytical solutions about the Euler-Lagrange arcs were obtained by means of 
Taylor series expansion with the square, cubic and radiative heat transfer laws when the total time mt  is 
very short. Ma et al. [41] repeated the investigations on the optimal configurations of expansion process 
with the generalized radiative heat transfer law by means of elimination method, and derived the exact 
analytical solutions of the intermediate Euler-Lagrange arc with square and cubic heat transfer laws. 
Song et al. [42] further introduced the linear phenomenological heat transfer law into the model external 
combustion engine, and studied the effects of heat transfer laws on the optimal motion. Chen et al. [43] 
applied the results obtained in Ref. [38] to the model internal combustion engine with the linear 
phenomenological heat transfer law. 
In this paper, based on Refs. [26, 27, 41, 42], the generalized radiative heat transfer law [ ( )nq T∝ ∆ ] [44-
49] is introduced into a model external combustion engine with a movable piston, and effects of heat 
transfer laws on the optimizations of the engine for maximum work output are investigated in this paper. 
Numerical examples for the optimizations with linear phenomenological ( n 1= − ), Newton’s ( n 1= ), 
square ( n 2= ), cubic ( n 3= ) and radiative ( n 4= ) heat transfer laws are provided, respectively, and the 
obtained results with five special heat transfer laws are compared with each other. 
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2. Optimal Solutions 
The model external combustion engine with a movable piston is shown in Figure 1. The gas inside the 
cylinder is only 1  mol, and is coupled to an external heat bath at a constant temperature exT . A heat 
source heats the gas uniformly with the rate of output ( )f t , which is an arbitrary given function of time. 
The heat transfer between the gas and the external heat bath is assumed to obey the generalized radiative 
heat transfer law [ ( )nq T∝ ∆ ], where q  is the heat flux across the cylinder walls with heat conductance 
U , T  is the gas temperature. As done in Refs. [25-30, 38-43], it is assumed that the wall conducts heat 
very fast and all parts of the cylinder heat up regardless of the position of the piston. Therefore, the heat 
conductance U  of cylinder wall can be taken to be a constant. Furthermore, it is assumed that the inertia 
of the gas and the piston is negligible and there is no friction associated with the movement of the piston. 
 

 
 

Figure 1. Schematic diagram of the model: a mole of ideal gas inside a cylinder is pumped by a given 
heating function ( )f t  and is coupled to heat bath 

 
For the system, the following equation can be obtained by using the first law of thermodynamics 
 

( ) ( ) ( ) [ ( ) ] ( )n n
exE t f t W t U T t T Sign n= − − −& &  (1) 

where E&  is the rate of change of internal energy of the gas, ( )W t&  is the power of expansion against the 
piston, and ( )Sign n  is a sign function, ( ) 1Sign n =  if 0n >  and ( ) 1Sign n = −  if 0n < . One wishes to 
maximize the power output, i.e. maximize the work output per cycle with fixed ( )f t , initial volume 0V  
of the gas, final volume mV  of the gas, initial internal energy of the gas 0E , and total time mt  allowed for 
the cycle. 
The results of Ref. [41] showed that the optimal control for the expansion of a heated working fluid with 
the generalized radiative heat transfer law consists of, at most, three stages: (1) an initial instantaneous 
adiabat; (2) an intermediate Euler-Lagrange arc, i.e. E L−  arc; and (3) a final instantaneous adiabat. 
Stage (1) is the initial adiabat from (0)V  to ' (0)V  at 0t = . The equation is 
 

/' '(0) (0)[ (0) / (0)] VR CE E V V −=  (2) 
where ' (0)E  is the final value of internal energy of the initial instantaneous adiabat. 
Stage (2) is the Euler-Lagrange arc ( E L−  arc) and proceeds from the initial ' (0)V  and ' (0)E  at 0t =  
until time mt t= . Based on Ref. [41], the E L−  arc can be determined using the following equations: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
n+1 n n+1

Vn 1 n
n n n n

V V

n 1 UE' 0 Sign n C E' 0
E t E t F t 0

n 1 UE' 0 Sign n C F 0 n 1 UE' 0 Sign n C F 0
+ −

− − =
− + − +

 (3) 
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( ) ( ) ( )
( )

( ) ( ) ( )
( )

V nC R
t VV

0

F t U E t C Sign nE t C
V t V' 0 exp dt

E' 0 R E t

− ⎧ ⎫− ⎡ ⎤⎡ ⎤ ⎪ ⎪⎣ ⎦= ⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

∫  (4) 

where VC  is molar heat capacity, R  is the universal gas constant, and ( ) ( ) ( ) exSign nF t f t n UT= + . 
The E L−  arcs for different heat transfer laws are different, and the corresponding solving methods are 
different as well. For the cases of n 1= − , n 1= , n 2=  and n 3= , the analytical solutions about the E L−  
arcs can be derived by solving Eqs. (3) and (4); while 4n ≥ , since the analytical solution of ( )E t  cannot 
be derived by solving Eq. (3), the solution about the E L−  arc should be determined by using the 
numerical techniques. 
Stage (3) is the final adiabat from ( )mV t  to mV  at mt t=  
 

/( )[ / ( )] VR C
m m m mE E t V V t −=  (5) 

where ( )mV t  and ( )mE t  can be obtained from Equations of E L−  arcs at time mt . 
 
3. Applications to the optimization of the model external engine 
Optimal configurations of expansion process of a heated working fluid in the piston cylinder for 
maximizing work output with the generalized radiative heat transfer law have been determined in Refs. 
[39, 41], and the obtained results can be further applied to the investigations of optimal configurations 
for maximizing power output, investigations of optimal configurations for maximizing work output with 
fixed power output, optimizations of the model external combustion engine and optimizations of the 
model internal combustion engine with the generalized radiative heat transfer law. Based on Refs. [27, 
41, 42], optimal operations of a model external combustion engine for maximizing work output with 
fixed the total time mt  and heating function ( )f t  are investigated in this section. 
According to Refs. [27, 42], optimal operation of the model external combustion engine contains fully 
cyclic operation and semi-cyclic operation. It is assumed that the engine is changed to fully cyclic 
operation from time it . The solution for the fully cyclic operation can be obtained from the equations of 
E L−  arc with the condition that at time i mt t t= + , ( )V t  and ( )E t  return to their initial values. Since 

( )F t  is assumed to be periodic with period mt , the exponential of the right-hand side of Eq. (4) should 
vanish at i mt t t= + , and then the initial value of internal energy at time it  for fully cyclic operation, ( )iE t , 
can be obtained. The constraint ( ) ( )i i mE t E t t= +  reduces the number of degrees of freedom available in 
controlling the system operation. As a result, the optimal fully cyclic operation contains no adiabats.  
At the very start of engine operation, the temperature of the working fluid equals to the external 
temperature, exT . It will therefore require a number of cycles (semi-cyclic operation) before the initial 
temperature reaches the initial steady-state temperature for fully cyclic operation. In the semi-cyclic 
operation, only ( ) ( )i i mV t V t t= +  is satisfied, and the temperature of the working fluid is not periodic. The 
optimal semi-cyclic operation consists of three stages: (1) an initial instantaneous adiabat; (2) an 
intermediate E L−  arc; and (3) a final instantaneous adiabat. 
The methods to determine the optimal final value of internal energy of the initial instantaneous adiabat, 

'(0)E , for different heat transfer laws (different values of n ) are different. For the cases of n 1= − , n 1= , 
n 2=  and n 3= , the analytical solutions about the E L−  arcs can be derived by solving Eq. (3). Then, as 
done in Refs. [27, 42], the optimal staging problem for maximum expansion work W  becomes a one-
dimensional optimization problem. To determine the optimal '(0)E , taking the derivation of W  with 
respect to '(0)E  and setting it equal to zero ( ( )'dW dE 0 0= ), one can get [41] 
 

( ) [ ]{ }( )

( ) ( )

mt n
V0m

' '

d U Sign n E t C dtdE
+ =0

dE 0 dE 0

⎡ ⎤⎣ ⎦ ∫
 (6) 

While for the case of 4n ≥ , since the analytical solution of ( )E t  cannot be derived by solving Eq. (3), 
the optimal '(0)E  should be determined by using the numerical techniques. 
Once the initial temperature ( ( ) /i VE t C ) is ensured, the optimal motion is changed into the fully cyclic 
operation from the semi-cyclic operation. Then, the optimal cyclic solution contains no adiabats 
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(regardless of the form of the heating function). The cyclic nature of the solution forces the elimination 
of the adiabatic arcs. 
The work output W  per cycle in the time internal ( , )i i mt t t+  is 
 

( )( ) ( ) ( ) ( )i m i m

i i

t t t t n
i i m nt t

V

USign nW F t dt E t E t t E t dt
C

+ +
= + − + −∫ ∫  (7) 

The irreversible efficiency of the process η  is defined as 
 

/ pW Eη =  (8) 

where pE  is the energy pumped into the system, 
0

( )mt f t dt∫ . 

The optimal operations of the engine for different heat transfer laws are as following. 
 
3.1 Optimal operation with n 1= −  [42] 
When 1n = − , the heat transfer obeys linear phenomenological heat transfer law used in irreversible 
thermodynamics [44].  
Firstly, the analytical solution of optimal internal energy ( )E t  with respect to ( )F t  and ( )iE t  can be 
obtained by substituting 1n = −  into Eq. (3) 
 

( ) [ ]
2 ( )

2 ( ) ( ) ( )
V i

V i i

UC E t
E t

UC F t F t E t
=

− −
 (9) 

Secondly, the exponential of the right-hand side Eq. (4) should vanish at i mt t t= + , yields the condition 
 

2 1 2( ) 2 / {[ ( ) / ] ( )}i m

i

t t

i V m it
E t UC F t dt t F t

+
= −∫  (10) 

There are two solutions of Eq. (10), a positive one and a minus one, and the positive one should be held. 
Finally, the value of '(0)E  for the optimal semi-cyclic operation can be determined using Eq. (6) by 
means of numerical techniques.  
Since the values of ( )iE t  for the optimal fully cyclic operation and '(0)E  for the optimal semi-cyclic 
operation are determined, the optimal fully cyclic operation and the optimal semi-cyclic operation can be 
determined using Eqs. (4) and (9). 
 
3.2 Optimal operation with n 1=  [27] 
When n 1= , the heat transfer obeys Newton’s heat transfer law. 
Firstly, the analytical solution of optimal internal energy ( )E t  with respect to ( )F t  and ( )iE t  can be 
obtained by substituting n 1=  into Eq. (3) 
 

( ) ( )[ ( ) / ( )]1 2
i iE t E t F t F t=  (11) 

Secondly, the exponential of the right-hand side Eq. (4) should vanish at i mt t t= + . One has 
 

1 2 1 2( ) = ( ) ( )i m

i

t t/ /V
i i t

m

C
E t F t F t dt

URt
+

∫  (12) 

Finally, the value of '(0)E  for the optimal semi-cyclic operation can be determined using Eq. (6) by 
means of numerical techniques.  
Since the values of ( )iE t  for the optimal fully cyclic operation and '(0)E  for the optimal semi-cyclic 
operation are determined, the optimal fully cyclic operation and the optimal semi-cyclic operation can be 
determined using Eq. (4) and Eq. (11). 
 
3.3 Optimal operation with 2n =  
When 2n = , the heat transfer is applicable to radiation propagated along a one-dimensional transmission 
line, and the heat transfer coefficient in this case is equal to 2 2 /(6 )k hπ , where h  is the Planck’s constant 
and k  is the Stefan- Boltzmann constant [44]. 
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Firstly, the analytical solution of optimal internal energy ( )E t  with respect to ( )F t  and ( )iE t  can be 
obtained by substituting 2n =  into Eq. (3) 
 

( )
2 23 3

1 1 112 2 2 4
6

AU A U B B
E t

+ +
=  (13) 

where 
3 2 2

1 ( ) / ( ) ( )i i V iA E t UE t C F t⎡ ⎤= +⎣ ⎦  (14) 
 

2 3 3 2 4 2 4 2 3 1 3
1 1 1 1 1[27 ( ) 2 3 3 27 ( ) 4 ( )]V V VB A C F t A U A C F t A C U F t= + + +  (15) 

Secondly, the exponential of the right-hand side Eq. (4) should vanish at i mt t t= + . One has 
 

( ) ( )
( )

2
i m

i

t t V

t

F t U E t C
dt=0

E t
+ − ⎡ ⎤⎣ ⎦∫  (16) 

The value of ( )iE t  for the optimal fully cyclic operation can be determined using Eq. (16) by means of 
numerical techniques. 
Finally, the value of '(0)E  for the optimal semi-cyclic operation can be determined using Eq. (6) by 
means of numerical techniques. Since the values of ( )iE t  for the optimal fully cyclic operation and '(0)E  
for the optimal semi-cyclic operation are determined, the optimal fully cyclic operation and the optimal 
semi-cyclic operation can be determined using Eq. (4) and Eq. (13). 
 
3.4 Optimal operation with 3n =  
When 3n = , the heat transfer is applicable to radiation propagated along a two-dimensional surface [44]. 
Firstly, the analytical solution of optimal internal energy ( )E t  with respect to ( )F t  and ( )iE t  can be 
obtained by substituting 3n =  into Eq. (3) 
 

3 3
2 2 1 3 1 2 2 2 1 32 22 2 2

2 21 3 1 3
2 2

3 3
1 22

2 2 3 1 3 1 3 1 2
2 2 2

2 ( ) 2 ( )2 21 1( ) [ ( ) ] [2 ( )
2 9 2 2 9(3 4) (3 4)

2
          ]

[ 2 ( ) (3 4) ( 2 9) ]

V V

V

A C F t A C F tB A U B
E t A U A U

B B

A U
A U AC F t B B

= − + + + + − +

− +

 (17) 

where 
4

2 3 3

( )
2 ( ) ( )

i

i V i

E t
A

UE t C F t
=

+
 (18) 

 
3 3 2 3 9 3 6 6 4 2

2 2 2 29 ( ) 3 16 ( ) 27 ( )V V VB A C U F t A C F t A C U F t= − + +  (19) 
Secondly, the exponential of the right-hand side Eq. (4) should vanish at i mt t t= + . One has 
 

( ) ( )
( )

3
i m

i

t t V

t

F t U E t C
dt=0

E t
+ − ⎡ ⎤⎣ ⎦∫  (20) 

The value of ( )iE t  for the optimal fully cyclic operation can be determined using Eq. (20) by means of 
numerical techniques. 
Finally, the value of '(0)E  for the optimal semi-cyclic operation can be determined using Eq. (6) by 
means of numerical techniques.  
Since the values of ( )iE t  for the optimal fully cyclic operation and '(0)E  for the optimal semi-cyclic 
operation are determined, the optimal fully cyclic operation and the optimal semi-cyclic operation can be 
determined using Eq. (4) and Eq. (17). 
 
3.5 Optimal operation with 4n =  
When 4n = , the heat transfer obeys radiative heat transfer law if all the bodies are black, and the heat 
transfer coefficient in this case is related to the Stefan-Boltzmann constant. 
Firstly, substituting 4n =  into Eq. (3) yields 
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5 4 5
5 4

4 4 4 4

3 ( ) ( )
( ) ( ) ( ) 0

3 ( ) ( ) 3 ( ) ( )
i V i

i V i i V i

UE t C E t
E t E t F t

UE t C F t UE t C F t
− − =

+ +
 (21) 

The analytical solution of ( )E t  with respect to ( )F t  and ( )iE t  cannot be obtained because Eq. (21) 
cannot be solved directly.  
Secondly, the exponential of the right-hand side Eq. (4) should vanish at i mt t t= + . One has 
 

( ) ( )
( )

4
i m

i

t t V

t

F t U E t C
dt=0

E t
+ − ⎡ ⎤⎣ ⎦∫  (22) 

The value of ( )iE t  for the optimal fully cyclic operation can be determined using Eqs. (21)-(22) by 
means of numerical techniques. 
Finally, because the analytical solution of ( )E t  cannot be obtained, the value of ( )E' 0  cannot be 
determined using the equation d d '(0) 0W E = , which is used for the cases of n 1= − , n 1= , n 2=  and 
n 3= . In order to find the optimal value of ( )E' 0 , the method of exhaustion is adopted. All possible 
values of ( )E' 0  are chosen to calculate the corresponding values of objective function W . Then, the 
optimal value of ( )E' 0  to maximize the objective function can be determined. 
Since the values of ( )iE t  for the optimal fully cyclic operation and '(0)E  for the optimal semi-cyclic 
operation are determined, the optimal fully cyclic operation and the optimal semi-cyclic operation can be 
determined using Eq. (4) and Eq. (21). 
 
4. Numerical examples 
Now, numerical examples for the optimal piston motion of a model external combustion engine for 
maximizing work output with the generalized radiative heat transfer law are provided. In the calculations, 

3 3(0) 1 10mV V m−= = × , (0) 3780E J= , 300exT K= , 3 / 2VC R= , 2smt =  and 60( ) [sin( )]f t A tω= , where 
204720 / sA J=  and 2 / 4 / sradω π=  are set. 

 
4.1 Numerical example for n 1= −  
Table 1 lists the values of the state variables, the maximum work output W  and the corresponding 
efficiency η  for the optimal fully cyclic operation and the optimal semi-cyclic operation. It can be seen 
from Table 1 that with the increase of heat conductance U , the energy leaking into the bath from the gas 
increases, so both the maximum work output W  and the corresponding efficiency η  for two optimal 
operations decrease progressively. The compression ratio γ , work output W  and corresponding 
efficiency η  for the optimal semi-cyclic operation are larger than those for the optimal fully cyclic 
operation. This is because that in the optimal semi-cyclic operation, only ( ) ( )i i mV t V t t= +  is satisfied, 
while in the optimal fully cyclic operation, both ( ) ( )i i mV t V t t= +  and ( ) ( )i i mE t E t t= +  are satisfied. This 
means that in the optimal semi-cyclic operation, relaxing system constraint and weakening the 
assumptions on system operations, yields larger work output W  and corresponding efficiency η ; 
whereas in the optimal fully cyclic operation, adding constraints and tightening the assumptions, yields 
smaller work output W  and corresponding efficiency η . 
 

Table 1. Parameters versus U  for case of n -1=  
 

Case  /( )U W K⋅  4.0×107 4.5×107 5.0×107 

( ) / JiE t  3884.40 3885.45 3882.97 
γ  47.86 36.98 42.83 
W  /J  11052.5 9731.0 8683.8 

fully  
cyclic  
operation 

η  0.2632 0.2317 0.2068 
' (0) / JE  3880.45 3881.90 3879.83 

γ  48.12 37.30 43.57 
W  /J  11061.1 9739.7 8692.2 

semi 
-cyclic  
operation 

η  0.2634 0.2319 0.2070 



International Journal of Energy and Environment (IJEE), Volume 2, Issue 4, 2011, pp.723-738 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2011 International Energy & Environment Foundation. All rights reserved. 

730 

Figures 2 and 3 show, respectively, optimal volume versus time of the optimal fully cyclic operation and 
the optimal semi-cyclic operation. Figures 4 and 5 show, respectively, optimal cycles of the optimal fully 
cyclic operation and the optimal semi-cyclic operation.  
It can be seen from Figure 2 that piston motion for the optimal fully cyclic operation is nearly sinusoidal, 
and consists of three stages: (1) an initial compression process; (2) an intermediate expansion process; 
and (3) final compression process. The time spent on the intermediate expansion process is 
approximately 0.5s , which is shorter than those on the two compression processes. In addition, with the 
increase of heat conductance U , the maximum volume of the working fluid during the expansion 
process increases progressively. This is because that with the increase of heat conductance U , the energy 
leaking into the bath from the gas increases, the ability of heat-work conversion of the engine is 
weakened. Therefore, to cover the decrement of the ability of heat-work conversion, the maximum 
volume of the working fluid during the expansion process should increase.  

 

 

Figure 2. Optimal volume versus time of the 
optimal fully cyclic operation when n -1=  

 

Figure 3. Optimal volume versus time of the 
optimal semi-cyclic operation when n -1=  

 

 

Figure 4. Optimal cycle of the optimal fully cyclic 
operation when n -1=  

 

Figure 5. Optimal cycle of the optimal semi-cyclic 
operation when n -1=  

 
It can be seen from Figure 3 that the optimal semi-cyclic operation consists of three stages: (1) an initial 
instantaneous adiabat; (2) an intermediate E L−  arc; and (3) a final instantaneous adiabat. The piston 
motion during the intermediate E L−  arc for the optimal semi-cyclic operation is similar with that for 
optimal fully cyclic operation. In addition, with the increase of heat conductance U , the maximum 
volume of the working fluid during E L−  arc increases progressively.  
It can be seen from Figures 4 and 5 that with the increase of heat conductance U , the energy leaking into 
the bath from the gas increases, so the maximum internal energy decrease progressively. In addition, in 
the semi-cyclic operation, only ( ) ( )i i mV t V t t= +  is satisfied, and the temperature of the working fluid is 
not periodic. Once the initial steady-state temperature ( ( ) /i VE t C ) is ensured, the optimal motion is 
changed into the fully cyclic operation from the semi-cyclic operation. 
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4.2 Numerical example for n 1=  
Table 2 lists the values of the state variables, the maximum work output W  and the corresponding 
efficiency η  for the optimal fully cyclic operation and the optimal semi-cyclic operation. It can be seen 
that with the increase of heat conductance U , the maximum work output W  and the corresponding 
efficiency η  for two optimal operations decrease progressively. In addition, the compression ratio γ , 
work output W  and corresponding efficiency η  for the optimal semi-cyclic operation are larger than 
those for the optimal fully cyclic operation. Figures 6 and 7 show, respectively, optimal volume versus 
time of the optimal fully cyclic operation and the optimal semi-cyclic operation. Figures 8 and 9 show, 
respectively, optimal cycles of the optimal fully cyclic operation and the optimal semi-cyclic operation. 
The similar characteristics as those for the case of n -1=  can be seen from Figures 6-9.  
 

Table 2. Parameters versus U  for case of n 1=  
 

Case  /( )U W / K
 

12.6 14.7 16.8 
( ) / JiE t  6853.90 6574.71 6351.52 

γ  34.98 33.60 32.72 
W  /J  24169.6 23555.5 23000.2 

fully  
cyclic  
operation 

η  0.5755 0.5608 0.5476 
' (0) / JE  5181.02 4926.75 4694.79 

γ  52.11 54.28 57.99 
W  /J  26886.0 25849.4 24579.4 

semi 
-cyclic  
operation 

η  0.6401 0.6155 0.5852 
 

 

Figure 6. Optimal volume versus time of the 
optimal fully cyclic operation when n 1=  

 

Figure 7. Optimal volume versus time of the 
optimal semi-cyclic operation when n 1=  

 

 

Figure 8. Optimal cycle of the optimal fully cyclic 
operation when n 1=  

 

Figure 9. Optimal cycle of the optimal semi-cyclic 
operation when n 1=  
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4.3 Numerical example for n 2=  
Table 3 lists the values of the state variables, the maximum work output W  and the corresponding 
efficiency η  for the optimal fully cyclic operation and the optimal semi-cyclic operation. It can be seen 
that with the increase of heat conductance U , the maximum work output W  and the corresponding 
efficiency η  for two optimal operations decrease progressively. In addition, the compression ratio γ , 
work output W  and corresponding efficiency η  for the optimal semi-cyclic operation are larger than 
those for the optimal fully cyclic operation. 
Figures 10 and 11 show, respectively, optimal volume versus time of the optimal fully cyclic operation 
and the optimal semi-cyclic operation. Figures 12 and 13 show, respectively, optimal cycles of the 
optimal fully cyclic operation and the optimal semi-cyclic operation. The similar characteristics as those 
for the case of n -1=  can be seen from Figures 10-13. 
 

Table 3. Parameters versus U  for case of n 2=  
 

Case 2 /( )U W / K  0.04 0.05 0.06 
( ) / JiE t  6118.66 5784.51 5543.27 

γ  24.55 28.26 32.00 
W  /J  14228.1 13734.9 13291.3 

fully  
cyclic  
operation 

η  0.3388 0.3270 0.3165 
' (0) / JE  5493.19 5321.19 5183.24 

γ  39.39 42.79 46.30 
W  /J  16085.2 15185.6 14464.5 

semi 
-cyclic  
operation 

η  0.3830 0.3616 0.3444 
 

 

Figure 10. Optimal volume versus time of the 
optimal fully cyclic operation when n 2=  

 

Figure 11. Optimal volume versus time of the 
optimal semi-cyclic operation when n 2=  

 

 

Figure 12. Optimal cycle of the optimal fully  
cyclic operation when n 2=  

 

Figure 13. Optimal cycle of the optimal semi-cyclic 
operation when n 2=  
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4.4 Numerical example for n 3=  
Table 4 lists the values of the state variables, the maximum work output W  and the corresponding 
efficiency η  for the optimal fully cyclic operation and the optimal semi-cyclic operation. It can be seen 
that with the increase of heat conductance U , the maximum work output W  and the corresponding 
efficiency η  for two optimal operations decrease progressively. In addition, the compression ratio γ , 
work output W  and corresponding efficiency η  for the optimal semi-cyclic operation are larger than 
those for the optimal fully cyclic operation. Figures 14 and 15 show, respectively, optimal volume versus 
time of the optimal fully cyclic operation and the optimal semi-cyclic operation. Figures 16 and 17 show, 
respectively, optimal cycles of the optimal fully cyclic operation and the optimal semi-cyclic operation. 
The similar characteristics as those for the case of n -1=  can be seen from Figures 14-17. 

 
Table 4. Parameters versus U  for case of n 3=  

 
Case 3 /( )U W / K

 

2.0×10-4 2.5×10-4 3.0×10-4 

( ) / JiE t  5050.35 4862.91 4726.51 
γ  57.63 70.08 82.4395 
W  /J  9230.6 8839.3 8492.15 

fully  
cyclic  
operation 

η  0.2198 0.2105 0.2022 
' (0) / JE  4911.15 4760.40 4647.22 

γ  74.91 87.67 100.24 
W  /J  9853.4 9285.6 8868.0 

semi 
-cyclic  
operation 

η  0.2346 0.2211 0.2111 
 

 

Figure 14. Optimal volume versus time of the 
optimal fully cyclic operation when n 3=  

 

Figure 15. Optimal volume versus time of the 
optimal semi-cyclic operation when n 3=  

 

 

Figure 16. Optimal cycle of the optimal fully 
cyclic operation when n 3=  

 

Figure 17. Optimal cycle of the optimal semi-cyclic 
operation when n 3=  
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4.5 Numerical example for n 4=  
Table 5 lists the values of the state variables, the maximum work output W  and the corresponding 
efficiency η  for the optimal fully cyclic operation and the optimal semi-cyclic operation. It can be seen 
that with the increase of heat conductance U , the maximum work output W  and the corresponding 
efficiency η  for two optimal operations decrease progressively. In addition, the compression ratio γ , 
work output W  and corresponding efficiency η  for the optimal semi-cyclic operation are larger than 
those for the optimal fully cyclic operation. Figures 18 and 19 show, respectively, optimal volume versus 
time of the optimal fully cyclic operation and the optimal semi-cyclic operation. Figures 20 and 21 show, 
respectively, optimal cycles of the optimal fully cyclic operation and the optimal semi-cyclic operation. 
The similar characteristics as those for the case of n -1=  can be seen from Figures 18-21. 
 

Table 5. Parameters versus U  for case of n 4=  
 

Case 4 /( )U W / K
 

3.0×10-7 4.0×10-7 5.0×10-7 

( ) / JiE t  5407.02 5143.08 4960.58 
γ  49.92 62.83 75.58 
W  /J  7838.4 7597.3 7376.7 

fully  
cyclic  
operation 

η  0.1866 0.1809 0.1756 
' (0) / JE  5232.85 5015.49 4861.54 

γ  68.55 82.60 96.22 
W  /J  8677.7 8231.3 7879.4 

semi 
-cyclic  
operation 

η  0.2066 0.1960 0.1876 
 

 

Figure 18. Optimal volume versus time of the 
optimal fully cyclic operation when n 4=  

 

Figure 19. Optimal volume versus time of the 
optimal semi-cyclic operation when n 4=  

 

 

Figure 20. Optimal cycle of the optimal fully 
cyclic operation when n 4=  

 

Figure 21. Optimal cycle of the optimal semi-cyclic 
operation when n 4=  
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4.6 Comparisons between optimal operations with special heat transfer laws  
Figures 22 and 23 show, respectively, optimal volume versus time of the optimal fully cyclic operation 
and the optimal semi-cyclic operation for five special heat transfer laws. Figures 24 and 25 show, 
respectively, optimal cycles of the optimal fully cyclic operation and the optimal semi-cyclic operation 
for five special heat transfer laws. It can be seen from Figures 22-25 that although all of the curves of 
volume versus time of the optimal fully cyclic operation and the E L−  arcs of the optimal semi-cyclic 
operation are nearly sinusoidal and consist of three stages with the five heat transfer laws, the curves 
with different heat transfer laws are different. The differences for the optimal operations with different 
heat transfer laws are as follows: (1) in the optimal fully cyclic operation and E L−  arcs of the optimal 
semi-cyclic operation, the time spent on the three stages is different, which means that the times 
corresponding to the maximum volume and minimum volume with different heat transfer laws are 
different; (2) the maximum volume, minimum volume and maximum internal energy of the working 
fluid along a cycle with different heat transfer laws are different; (3) in the optimal semi-cyclic operation, 
the final value of volume '(0)V and internal energy '(0)E  of the initial instantaneous adiabat are different. 
 

 
Figure 22. Optimal volume versus time of the 

optimal fully cyclic operation with different heat 
transfer laws 

 
Figure 23. Optimal volume versus time of the 

optimal semi-cyclic operation with different heat 
transfer laws 

 

 
Figure 24. Optimal cycle of the optimal fully 

cyclic operation with different heat transfer laws 

 
Figure 25. Optimal cycle of the optimal semi-cyclic 

operation with different heat transfer laws 
 
5. Conclusion 
The generalized radiative heat transfer law [ ( )nq T∝ ∆ ] is introduced into a model external combustion 
engine with a movable piston, and effects of heat transfer laws on the optimizations of the engine for 
maximum work output are investigated in this paper. Numerical examples for the optimizations with 
linear phenomenological ( n 1= − ), Newton’s ( n 1= ), square ( n 2= ), cubic ( n 3= ) and radiative ( n 4= ) 
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heat transfer laws are provided, respectively, and the obtained results are compared with each other. The 
results show that work output and efficiency of the optimal fully cyclic operation and optimal semi-
cyclic operation decrease with the increase of heat conductance, and the work output, compression ratio 
and efficiency of the optimal semi-cyclic operation are larger than those of optimal fully cyclic operation. 
Although all of the curves of volume versus time of the optimal fully cyclic operation and the E L−  arcs 
of the optimal semi-cyclic operation are nearly sinusoidal and consist of three parts with the five heat 
transfer laws, the curves with different heat transfer laws are different. 
The generalized radiative heat transfer law is introduced into the model external combustion engine in 
this paper, and the results include the results obtained in the previous work [27, 42], enrich the theory of 
finite time thermodynamics, and make it more systemic and perfect. 
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