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Abstract 
Performance of an endoreversible Carnot heat pump cycle with finite speed of the piston is investigated 
by using finite time thermodynamics. The analytical formulae between the optimal heating load and the 
coefficient of performance (COP), as well as between the optimal heating load and speed ratio of the 
piston are derived. It is found that the heating load versus COP characteristics are parabolic-like, and 
there exist a maximum heating load and the corresponding COP. These are different from the 
monotonically decreasing characteristic of the endoreversible Carnot heat pump without consideration of 
the finite speed of the piston. At the same time, the effects of reservoir temperature ratio on the optimal 
relations are analyzed by numerical examples. In the analysis and optimization, two cases with and 
without limit of cycle period are included. 
Copyright © 2011 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Since the 1970s, finite time thermodynamics was applied to study performance optimization problems of 
thermodynamic cycles by many researchers and many practical significant results were obtained [1-5]. In 
the research field of heat pump cycles, Blanchard [6] was the first to derive the COP bounds for the fixed 
heating load for an endoreversible Carnot heat pump with Newtown’s heat transfer law. Goth and Feidt 
[7] also obtained the similar results. Chen et al. [8, 9] established the performance holographic spectrum 
and derived the optimization criteria of the endoreversible Carnot heat pump [8], and analyzed the effect 
of heat transfer law on the performance of the endoreversible Carnot heat pump. Chen et al. [10] 
investigated the specific heating load optimization and the COP optimization of the endoreversible 
Carnot heat pump, derived the bounds of specific heating load and COP as well as the optimal relation 
between the optimal specific heating load and COP. Chen et al.  [11] studied the effects of heat 
resistance and internal irreversibility on the characteristics of air heat pump cycles with constant and 
variable temperature thermal reservoirs. Bi et al. [12, 13] derived the analytical formulae between the 
dimensionless heating load and pressure ratio, between the COP and pressure ratio, as well as between 
the dimensionless heating load density and pressure ratio of the endoreversible air heat pump with 
constant and variable temperature thermal reservoirs, and optimized the heating load and the heating load 
density by searching the optimal distribution of heat conductance of the cycle. Recently, Agrawal and 
Menon [14] and Agrawal [15] established a new cycle model of finite speed of the piston based on the 
assumption that the finite speeds of the piston on the four thermodynamic branches are equal for 
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studying performance of classical reversible Carnot engine [14] and endoreversible Carnot engine [15]. 
On the basis mentioned above, this paper will establish a cycle model of endoreversible Carnot heat 
pump considering the characteristics of finite time and finite speed of the piston with the Newtown’s heat 
transfer law, and derive the relations among the heating load, the COP, and the speed ratio of the piston 
of the cycle. In the analysis and optimization, two cases with and without limit of cycle period are 
considered based on the assumption that the finite speeds of the piston on the four thermodynamic 
processes are unequal. 
 
2. Cycle description 
The P-V diagram and T-s diagram of the endoreversible Carnot heat pump cycle are shown in Figure 1 
and Figure 2. The process (1-2) is isothermal absobing heat branch of the working fluid from heat source 

LT , the process (3-4) is isothermal releasing heat branch of the working fluid to heat sink HT , the 
processes (2-3, 4-1) are reversible adiabatic compression branch and reversible adiabatic expansion 
branch of the working fluid. The following assumption are made. The mass of the working fluid per 
cycle is m . The ratio of the specific heats of the working fluid is γ . The absorbing and realeasing 
temperatures of working fluid are LCT  and HCT . the volumes of the gas at the four states are 

( 1, 2,3, 4)iV i = . The gas constant is gR . The speeds of the piston on the four thermodynamic processes are 
( 1, 2,3, 4)iv i = . They are defined as the passed volume of the piston per second. The temperature ratio of 

the heat reservoirs is H LT Tτ = . The cycle period is st . The times spent on the four branches are 
( 1,2,3, 4)it i = . 

 

  
 

Figure 1. P-V diagram for cycle model 
 

Figure 2. T-s diagram for cycle model 
 
3. Performance analysis of the heat pump cycle 
Consider that the heat transfer between the heat reservoirs and working fluid obeys Newtown’s law. 
According to the properties of heat transfer, the quantity of heat transfer ( LCQ ) supplied by the heat 
source and the quantity of heat transfer ( HCQ ) released to the heat sink are, respectively, given by 
 

1 1 1( )LC L LCQ K F T T t= −  (1) 
 

2 2 3( )HC HC HQ K F T T t= −  (2) 
where 1K  and 2K  are the heat transfer coefficients between the working fluid and heat reservoirs, 1F  and 

2F  are the heat transfer surface areas of the heat exchangers. 
For an endoreversible cycle, the entropy change of the working fluid is zero, i.e., 0ds =∫ , therefore, one 
has 
 

aLC HC LC HCQ Q T T= =  (3) 
According the state equations of idea gas and the equations of adiabatic process, one has 
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1 ( 1) 1 ( 1)
3 2 4 1 ( ) aLC HCV V V V T T γ γ− −= = =  (4) 

 
2 1 3 4V V V V V ∗= =  (5) 

Assuming that the relations of speeds of the piston on the four branches are as follows: 
 

3 1x v v= , 2 4v v= , 2 1y v v=  (6) 
From equations (4)-(6), the times of the four branches can be obtained as follows: 
 

2 1 1 2 2
1

1 1 1 1

( 1) ( 1)
V V V V V

t V
v v V v V

∗
∗

−
= = − = −  (7) 

 
1 ( 1)2 3 31 2 2

2
2 2 1 1 1

( ) (1 a )
y

V V VV V V
t

v v V V v
γ −−

= = − = −  (8) 

 
1 ( 1)3 4 31 4 2

3
3 3 1 1 1

( ) ( 1)a
x

V V VV V V
t V

v v V V v V
γ∗ −

∗

−
= = − = −  (9) 

 
1 ( 1)1 4 1 4 2

4
4 4 1 1

(1 ) (1 a )
y

V V V V V
t

v v V v V
γ −

∗

−
= = − = −  (10) 

According to the properties of working fluid, the quantities of heat transfer ( LCQ , HCQ )can also be given 
by 
 

2

1
lnLC g LCQ PdV mR T V ∗= =∫  (11) 

 
4

3
lnHC g HCQ PdV mR T V ∗= − =∫  (12) 

Combining equations (1), (2), (3), (7) with (9) gives the releasing heat temperature of working fluid 
 

( 1)
1 1 2 2

( 1)
1 1 2 2

[ x a ]
xa a

L
HC

T K F K F
T

K F K F

γ γ

γ γ

τ−

−

+
=

+
 (13) 

Combining equations (1), (7), (11) with (13) gives 
 

1 ( 1)
2 1 2 1 2

( 1)
1 1 1 2 2

a (1 a )ln
1 ( x a ) g

V K K F FV V
V v K F K F mR

γ

γ γ

τ
τ

−∗ ∗

∗ −

−
=

− +
 (14) 

Combining equations (2), (9), (12) with (13) also gives 
 

1 ( 1)
2 1 2 1 2

( 1)
1 1 1 2 2

a (1 a )ln
1 ( x a ) g

V K K F FV V
V v K F K F mR

γ

γ γ

τ
τ

−∗ ∗

∗ −

−
=

− +
 (15) 

From equations (7)-(10), the cycle period can be obtained as follows: 
 

1/( 1) 1/ ( 1)
2

1

( 1)(x a ) (1 a )( 1)
x ys

V V Vt
V v

γ γ∗ − − ∗

∗

⎡ ⎤− + − +
= +⎢ ⎥

⎣ ⎦
 (16) 

The COP ( β ) and heating load (π ) of the cycle can be, respectively, obtained as follows: 
 

1
1 a

HC

HC LC

Q
Q Q

β = =
− −

 (17) 

 
1

1 2 1 2
1 1 ( 1) 1 1 ( 1)

1 ( 2) ( 1) 1
1 1 2 2

[1 (1 ) ]( 1)xy
{( 1)[x (1 ) ]y ( 1)[1 (1 ) ]x}

[ x(1 ) (1 )]

HC L

s

Q K K F F T V
t V V

K F K F

γ γ

γ γ

β τ
π

β β

β β

− ∗

∗ − − ∗ − −

− − − −

− − −
= =

− + − + + − −

                − + −

 (18) 
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4. Discussions  
4.1 Without the limit of cycle period 
From equations (17) and (18), one can see that the COP ( β ) increases monotonically with the increase 
of temperature ratio ( a ) of working fluid, the heating load (π ) is the function of the speed ratios ( x , y ) 
of the piston and temperature ratio ( a ) of working fluid, and π  increases monotonically with the 
increase of y . According to the extremum condition a=0d dπ , when a=aopt  satisfies the following 
equation  
 

( 2)/ ( 1)
1 2 1 2 1 1 2 2 a

1/( 1) 1/ ( 1)

( 2)/ ( 1) 1/( 1)
1 1 2 2 a

( xa a )( 1)[(1 a ) ( 1)]

[( 1)(x+a )y+( 1)(1 a )x]

(1 a )( 1)( xa a ){[(y+1)x+(y x)a ] (

r r
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r r
opt opt

r r r
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τ τ
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∗ − ∗ −

∗ − − − ∗

    + − − − −
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= − − + −
(2 )/ ( 1) 1/ ( 1)

1/ ( 1) 1/ ( 1)
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a [(y x) (x y)]}+(1 a )( 1)[( 1)(x+a )y
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 (19) 

 
The relation between the optimal heating load xoptπ −  and x  can be obtained as the following equation: 
 

1 2 1 2
x 1 ( 1) 1 ( 1) ( 2) ( 1)
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where 
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According to the extremum condition x=0d dπ , when x=xopt  satisfies the following equation, 
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the relation between the optimal heating load opt βπ −  and β  can be obtained as the following equation: 
 

1
1 2 1 2

1 1 ( 1) 1 1 ( 1)
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where 
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4.2 With the limit of cycle period 
In the case with limit of cycle period (i. e. st  is fixed), combining equations (2), (13) with (15), the 
heating load ( 'π ) of the cycle can be obtained as follows: 
 

( 1)
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From equations (15) and (25), one can see that 'π  is the function of x and a . According to the extremum 
condition ' a=0d dπ , when 'a=a opt  satisfies the following equation  
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The relation between the optimal heating load '
xoptπ −  and x  can be obtained as the following equation: 
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where '
aV ∗  is determined by equation (21) by replacing aopt  with 'a opt . 

According to the extremum condition ' x=0d dπ , when 'x=x opt  satisfies the following equation 
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The relation between the optimal heating load '
opt βπ −  and β  can be obtained as the following equation: 
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where '
xV ∗  is determined by equation (24) by replacing xopt  with 'x opt . 

 
5. Numerical example 
In the calculations, the parameters are set as follows: 0.5m kg= , 287.1 /( )gR J kg K= ⋅ , 2 1/ 140V v ms= , 

260LT K= , and 1 1 2 2 16 /K F K F kW K= = . When the cycle period is not limited, y 4= ; when the cycle 
period is limited, 160st ms= . x  and  a  are the variables with the ranges of 0.7 x 1.1≤ ≤  and 0.4 a 0.8≤ ≤ . 
The characteristic curves between the optimal heating load and the speed ratio ( x ) of the piston, as well 
as between the optimal heating load and COP ( β ) in the two cases with and without limit of cycle period 
are shown in Figures 3-6. 
 

  
 

Figure 3. Relation between xoptπ −  and x  with 
different heat reservoir temperature ratio 

 
Figure 4. Relation between opt βπ −  and β  with 

different heat reservoir temperature ratio 
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Figure 5. Relation between '
xoptπ −  and x  with 

different heat reservoir temperature ratio 

 
Figure 6. Relation between '

opt βπ −  and β  with 
different heat reservoir temperature ratio 

 
From Figure 3 and Figure 5, one can see that the optimal heating loads ( xoptπ − and '

xoptπ − ) decrease 
monotonically with the increase of x  nearly linear-like in the two cases. The optimal heating loads 
( xoptπ −  and '

xoptπ − ) decrease with the increase of heat reservoir temperature ratio (τ ) for the same x . 
From Figure 4 and Figure 6, one can see that the optimal heating loads ( opt βπ −  and '

opt βπ − ) versus β  are 
parabolic-like ones, there exist maximum heating loads and the corresponding COPs. There are two 
COPs for a fixed heating load, obviously, the heat pump should operate at the point where the COP is 
larger. The COPs corresponding to the maximum heating loads for the three heat reservoir temperature 
ratios are nearly equal, the optimal heating loads ( opt βπ − and '

opt βπ − ) decrease with the increase of heat 
reservoir temperature ratio (τ ) for the same β . When /( )c H H LT T Tβ β→ = − , there is 1V ∗ →  (the 
volume expansion ratio of the gas), 0opt βπ − → , and ' 0opt βπ − → . When 1β → , there is also 1V ∗ → , 

0opt βπ − → , and ' 0opt βπ − → . This is different from the performance characteristic of the endoreversible 
Carnot heat pump without consideration the finite speed of the piston. (the optimal heating load decrease 
monotonically with the increase of COP, when /( )c H H LT T Tβ β→ = − , there is 0optπ = ; when 1β → , 
there is maxoptπ π=  [6-8]).  
 
6. Conclusion 
Performance of an endoreversible Carnot heat pump cycle with finite speed of the piston is analyzed by 
using finite time thermodynamics. The two cases (with and without limit of cycle period) are discussed, 
the optimal formulae between the heating load and speed ratio of the piston, as well as between the 
heating load and COP are derived for the two cases. The characteristic curves of the heating load versus 
speed ratio of the piston, the heating load versus COP are obtained by numerical examples. The results 
show that, the optimal heating loads versus COP of the heat pump considering the characteristics of finite 
time and finite speed of the piston are parabolic-like one, and these are different from the monotonically 
decreasing characteristic of the endoreversible Carnot heat pump without consideration of the finite 
speed of the piston. Figs. 3-6 show that the temperature ratio has large effects on the relations of the 
optimal heating load versus speed ratio of the piston and the optimal heating load versus COP. The 
results of this paper can provide some theoretical guidelines for the operation estimation and parameter 
selection of practical heat pumps. 
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