
INTERNATIONAL JOURNAL OF 

ENERGY AND ENVIRONMENT 
 

 
Volume 3, Issue 2, 2012  pp.195-208 
 

Journal homepage: www.IJEE.IEEFoundation.org 

 
 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2012 International Energy & Environment Foundation. All rights reserved. 

Evaluation of different weather files on energy analysis of 
buildings 

 
 

Apostolos Michopoulos, Vassiliki Voulgari, Konstantinos Papakostas, Nikolas Kyriakis 
 

Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of 
Thessaloniki – POB 487 – 541 24 Thessaloniki – Greece.  

 
 
Abstract 
The building energy demand simulation tools consist the compass of the roadmap towards the energy 
efficient building. Apart from the software itself, the result of the simulation strongly depends on the 
degree the data used represent the actual situation, among which the climate data of the area are a key 
factor. In this work, the energy demand of a large building complex is estimated, using the widely 
accepted EnergyPlus building simulation software in combination with two, also widely accepted, 
weather files. The simulation results for heating are compared with the actual fuel consumption of a 
three-year operation period. The comparison reveals that the weather file and the size of the simulation 
domain significantly affect the simulation representativeness.  
Copyright © 2012 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
The share of total final energy consumed by the household and service sectors in the European Union 
(EU-27) was reduced from 42.5% in 1996 to 37.2% in 2008, while the corresponding figures for Greece 
were 35.5% (1996) and 34.7% (2008) [1, 2]. Space heating and cooling are the major energy consumers 
in buildings, accounting for about 63% to 70% (residential and tertiary sector, respectively) in Greece, 
the remaining 37 to 30% being used for space illumination, appliances and electromechanical equipment 
operation [3, 4].  
Obviously, the energy consumption is directly related to both the operational cost of buildings and to 
their negative effect on the environment. There is therefore a growing interest on the energy efficient 
design, significantly intensified by the implementation of the European Directive 2002/91/EC [5] and the 
recast of it, European Directive 2010/31/EC [6], concerning the energy performance of buildings. To this 
direction, taking into account the aforementioned fact that the major energy consumers of a building are 
the heating and cooling systems, the evaluation of the relevant energy demands becomes the first step 
towards reducing the corresponding energy consumption. To this purpose, the long-term simulation of 
the building and of its systems is required, with the dynamic simulation programs being the main tool for 
the energy performance prediction [7-10]. A number of such tools has been developed over the last 20 
years, used for both the design of new buildings and for the improvement of existing ones [11-14].  
The building-specific data required for the prediction include details about: (1) construction (design and 
materials), (2) design and control characteristics of the HVAC system and (3) usage patterns. These data, 
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combined with detailed weather description, allow for energy demand estimation, the accuracy of which 
obviously depends on both the quality of the data and on the sophistication of the simulation. 
Of these data, those concerning the construction of the building and of the HVAC system are well 
defined in existing constructions or they can be detailed in the design phase. The ones, however, 
concerning the usage of the building, on which the estimation of internal loads depends on, and the 
weather details, on which the external loads depend on, are less certain. 
The influence of the internal loads uncertainty on the final result depends on the time scale of the 
simulation and on the size of the simulation domain, since the increase of either or both results in 
reducing the statistical error involved. 
The effect the climate data have on the simulation result is rather obvious, since they affect not only the 
energy losses estimation through the envelope [15, 16], in most cases being the major load, but also the 
efficiency of RES based systems, e.g. solar thermal systems, which in many cases are installed in order 
to cover building’s heating and cooling energy demands [17, 18]. 
This paper attempts to quantify the effect the simulation domain size and the climate data have on the 
accuracy of the energy demands of a rather large complex of buildings. To this aim, the energy demands 
of the buildings of the Aristotle University of Thessaloniki Campus were calculated and compared to the 
actual fuel consumption for heating. The energy demands of the buildings were calculated with the aid of 
the EnergyPlus software, using climate data from two different weather file databases. 
 
2. Details of the simulation exercise 
2.1 The university and the buildings 
The Aristotle University of Thessaloniki is the largest in the Southeast Europe, with 42 Departments and 
about 80,000 students. It is located at the city centre and the campus covers an area of 230,000 m2, with 
36 buildings of 275,500 m2 covered area. 
The older building was built in 1880 and the newer ones in 2003. As a result, all types of buildings are 
found: from stone built to modern concrete ones, with various degrees of thermal insulation, single or 
double glazing depending on the year of construction, and with or without shading elements. All the 
buildings however have central heating installation, while cooling is provided mainly by split type local 
air-to-air heat pumps. 
 

Table 1. The heated area and the insulation category of building complexes 
 

Group of Buildings Heated area [m2] Insulation category 
Kindergarten 1,110 II 
Faculty of Education 6,670 III 
Central Library 6,370 0.72/I – 0.28/III 
Administrative Building 11,120 I 
Faculty of Veterinary Medicine 15,210 0.75/I – 0.25/III 
Faculty of Philosophy 25,140 0.92/I – 0.08/III 
Faculty of Engineering 55,200 0.57/I – 0.34/II – 0.09/III 
Faculty of Natural Sciences 48,310 0.61/I – 0.29/II – 0.10/III 
Chemistry Department 15,845 I 
Meteorology Department 860 I 
Faculty of Law, Economic and Political Sciences 18,420 I 
Faculty of Medicine 19,440 0.80/I – 0.20/II 
Faculty of Dentistry 14,345 0.86/I – 0.14/III 
Observatory 715 I 
Faculty of Theology 7,620 0.87/I – 0.13/II 
Total  246,375  

 
The thermal insulation characteristics strongly depend on the construction year of the building. Buildings 
built before 1975 have no insulation at all, and for the purposes of this study they are characterized as 
Category I. Buildings built between 1975 and 1990 are partially insulated, and they are characterized as 
Category II. Finally, the newer buildings (construction year 1990 onwards) are insulated according to the 
Greek Thermal Insulation Regulation and they are characterized as Category III. Based on this 
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categorization, 66.3% of built area is Category I, 23.2% Category II and 10.5% Category III. For the 
purposes of this study, the buildings of the campus are grouped, the grouping accounting for the 
shadowing between buildings which affects the thermal gains. The groups of buildings identified are 
listed in Table 1. 
 
2.2 The parameters of the energy analysis 
The campus buildings include offices, classrooms and auditoriums, laboratories, libraries, refreshment 
rooms and other auxiliary spaces. 
With the aid of in-situ inspection in every space, the internal heat sources (people, lights, appliances) and 
ventilation habits were recorded, in order to reflect as accurately as possible the real conditions. 
Following the ASHRAE suggestions [19, 20], the required temperature of each space was defined, 
according to the space usage and the time of the year (heating or cooling period). The simulation 
performed with 1 h time step and accounted for vacations and legislated holidays, considered as non-
operation periods of the facilities. The basic parameters of the simulation are listed in Table 2.  
 

Table 2. Basic simulation parameters 
 

Latitude / Longitude 40° 36’ / 22° 59’ 
Operating hours 08:00 – 21:00 
Heating period 16 October – 15 May 
Desired indoor temperature during heating period (operating/non-operating 
hours) 

22°C / 18°C 

Cooling period 16 May – 15 October 
Desired indoor temperature during heating period (operating/non-operating 
hours) 

26°C / 30°C 

Air changes at Auditoriums, Classrooms, Laboratories, Refreshment rooms    
(operating/non-operating hours) 

2 arch / 0.3 arch 

Air changes at Offices, Libraries     (operating/non-operating hours) 1 arch / 0.3 arch 
 
 
2.3 Description of the weather files 
As already mentioned, climate data are required for energy simulation of buildings. Typically, these data 
consist of 8760 (the hours of a year) sets of characteristic values, such as wet and dry bulb temperatures, 
solar radiation, wind speed and direction etc., grouped in 12 typical months, finally forming the typical 
year of the area. In order to derive the typical year of an area, long term actual climate data and/or 
climate modelling results are statistically evaluated and weighted. A number of evaluation methodologies 
and sets of weighing factors are reported [21-24].  As a result and for each area, a number of different 
typical years can be found, such as the Typical Reference Year (TRY), the Weather Year for Energy 
Calculations (WYEC, WYEC2), the Typical Meteorological Year (TMY, TMY2, TMY3) and the 
International Weather for Energy Calculations (IWEC) [25]. Despite their differences, all these variations 
constitute a set of 12 months that are representative of the past. As such, the typical year is unlikely to 
include climate extremes and therefore it is suitable for the prediction of energy consumption but 
unsuitable for sizing the HVAC systems [26]. 
For the purposes of this study the IWEC from ASHRAE (GRC - IWEC 166220 WMO) and the 
METEONORM TMY2 (TMY-2 16622 WMO) were used. 
For the development of IWEC [27] weather file, the nine climatic parameters selected are the maximum, 
minimum and mean daily dry bulb and dew point temperature, the maximum and average daily wind 
speed, and total daily solar radiation.  The weighting factors are: 1/20 for the maximum and minimum 
dry bulb temperature, 6/20 for the mean dry bulb temperature, 0.5/20 for the maximum and minimum 
dew point temperature, 1/20 for the mean dew point temperature, 1/20 for the maximum and average 
wind speed, and 8/20 for the total global solar radiation. 
The TMY2 [28] weather file is based on the same parameters, with the addition of the direct normal solar 
radiation, and the weighting factors are: 1/20 for the maximum and minimum dry bulb and dew point 
temperature, 2/20 for the average dry bulb and dew point temperature, 1/20 for the maximum and 
average wind speeds, and 5/20 for the average daily solar and direct normal radiation. 
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3. Assessment of the weather files 
The two weather files of the Thessaloniki used in this work are based on measurements of the Micra 
Meteorological Station, situated at the Macedonia International Airport of Thessaloniki at a suburban 
area, 14 km from the city centre. 
The first of these weather files (GRC - IWEC 166220 WMO) has been produced by ASHRAE, IWEC 
hereafter, in the framework of the 1015 research project for the development of International Weather 
Year for Energy Calculation (IWEC) weather files [27] and it is available at the USA Department of 
Energy (DOE) site. 
The second weather file is from the METEONORM, version 5.0, database. It is a type 2 Typical 
Meteorological Year (reference code TMY-2 16622 WMO), TMY-2 hereafter. 
Despite the fact that both files are based on data from the same meteorological station, they are not 
identical, due to the different weighing factors mentioned. Figure 1 presents the monthly variation of 
minimum, maximum and average dry bulb temperatures resulting from the two weather files. The TMY-
2 weather file results in systematically higher mean temperatures, with the exceptions of January and 
December, higher maximum temperatures, with the exception of May, and lower minimum temperatures, 
with the exception of May and November.  
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Figure 1. The distribution of the air temperature based on the TMY-2 and IWEC weather files - 
maximum, minimum and monthly average 

 
 
Figure 2 shows the cumulative temperature distribution according to the two files. As it can be seen, at 
temperatures below 9°C the frequency of lower temperatures is higher in the TMY-2 case. At 
temperatures higher than 20°C the IWEC weather file shows higher frequency of higher temperatures, 
while the frequency of mid-range temperatures (9-20°C) is more or less identical in both files. 
These observations mean that the TMY-2 weather file suggests colder winter and probably hotter 
summer, it is expected therefore that the energy consumption predictions of a building will be higher in 
both winter and summer when they are based on TMY-2 weather file.  
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Figure 2. Cumulative distribution of the dry bulb temperature based on the TMY-2 and IWEC weather 
files 

 
In order to further investigate the differences between the two weather files, the heating and cooling 
degree-days (HDD and CDD, respectively) for base temperatures 15°C, 18°C and 22°C, 24°C 
respectively were determined. The results are shown in Figures 3-6. 
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Figure 3. Monthly and cumulative distribution of the HDD, based on the TMY-2 and IWEC weather 
files. Base Temperature: 15°C 
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Figure 4. Monthly and cumulative distribution of the HDD, based on the TMY-2 and IWEC weather 
files.  Base Temperature: 18°C 
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Figure 5. Monthly and cumulative distribution of the CDD, based on TMY-2 and IWEC weather files.  
Base Temperature: 22°C 
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Figure 6. Monthly and cumulative distribution of the CDD, based on TMY-2 and IWEC weather files.  
Base Temperature: 24°C 

 
Figures 3 and 4 present the monthly and the cumulative distribution of heating degree-days for base 
temperatures 15°C and 18°C respectively. The conclusion drawn from Figure 2 is confirmed: the TMY-2 
weather file results in higher HDD values for the colder months (November to January) and similar 
values for the months with intermediate temperatures (February and March) while the IWEC weather file 
results in higher values for the hotter months (April, May and October). 
The cumulative distribution of heating degree-days resulting from the TMY-2 weather file is always 
higher than the one from the IWEC for both base temperatures, the difference being more enhanced at 
lower base temperatures (base temperature 15°C: 1194 HDD from IWEC, 1257 HDD from TMY-2 – 5% 
deviation; base temperature 18°C: 1790 HDD from IWEC, 1831 HDD from TMY-2 – 2.2% deviation). 
This reduction of percentage deviation confirms the aforementioned overall colder climate of TMY-2. 
Figures 5 and 6 present the monthly and cumulative distribution of cooling degree-days for 22°C and 
24°C base temperatures according to the two weather files. 
The cooling degree-days resulting from TMY-2 weather file for all months and both base temperatures 
are always higher. As a result, the cumulative distribution is also always higher in the TMY-2 case, with 
the sum of CDD being 346 for the IWEC weather file and 420 CDD for the TMY-2 (17.6% deviation) in 
the 22°C base temperature case and 208 and 272 - deviation 23.6% - in the 24°C base temperature case. 
This increase in percentage deviation confirms the aforementioned conclusion that the TMY-2 weather 
file results in hotter summer. 
 
4. Simulation results and discussion 
Figure 7 presents the annual energy consumption of all building groups, as it resulted from the simulation 
with both weather files. As it was expected, the adoption of TMY-2 weather file results in higher energy 
demands for all building groups and both heating and cooling periods. 
The higher energy consumption group of buildings is that of the Engineering School, followed by that of 
the School of Natural Sciences and of Philosophy. This was expected, since these groups are the largest 
ones in terms of temperature regulated area (see Table 1). 
In order to eliminate the effect of the size of buildings, the energy consumption according to both climate 
files, reduced to the respective temperature regulated area (kWh/m2/a), is calculated and presented in 
Figure 8. 
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Figure 7. Energy consumption of the buildings’ groups of the A.U.Th. on annual basis 
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Figure 8. Energy Consumption per temperature regulated area of the buildings’ groups of the A.U.Th. on 
annual basis 

 
 

The highest heating specific energy consumption results for the Meteorology and Observatory buildings, 
followed by the Education School, the Philosophy School and the Medicine School groups, with 
significant differences however. 
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The highest cooling specific energy consumption results for the Central Library, followed by the 
Dentistry School and Theology School groups. 
The observed differences in both heating and cooling specific energy consumptions are due to the 
differences in construction and main orientation of the buildings as well as to the different usage profiles. 
Summarizing the results of Figure 8 and for the IWEC weather file, the heating specific energy 
consumption of University Campus building groups varies from 52 up to 113.2 kWh/m2/a, while for the 
TMY-2 weather file from 60 to 123.5 kWh/m2/a. 
The ranges for the cooling specific energy consumption are 10.5 – 64.3 kWh/m2/a and 12.4 – 65.7 
kWh/m2/a, for the IWEC and TMY-2 weather files, respectively. 
Based on the specific energy consumptions shown in Figure 8, a strong deviation between heating and 
cooling periods is observed, with ratios as high as 11. This is attributed to the fact that the majority of the 
University buildings is not in operation in the second half of July and in the first half of August, which is 
the worst period from the energy consumption for cooling point of view. During winter, the holiday 
period is significantly short; therefore it can’t strongly affect the heating specific energy consumption. 
The simulation results based on the two weather files are compared in Figure 9. As it can be seen, the 
results with the TMY-2 weather file in all but one case are higher, from 7.8% to 18.6% for heating and 
from 0.5% to 18.5% for cooling. 
A more detailed picture of the total energy demand for heating is given in Figure 10. As it can be seen, 
the demand resulting with the TMY-2 weather file for the months November to March is always higher 
than the one with the IWEC weather file. The comparison is inversed for October, April and May, with 
the IWEC file resulting in higher energy consumption. It has to be noted however that these months are 
the ones with the higher temperatures, therefore with the lower need for heating. Consequently the total 
energy consumption according to the TMY-2 file results higher. This picture confirms the overall milder 
character of the IWEC typical weather year, already expected from Figures 2-6. 
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Figure 9. Discrepancies on energy consumption of the building groups using the TMY-2 and IWEC 
weather files 

 
 



International Journal of Energy and Environment (IJEE), Volume 3, Issue 2, 2012, pp.195-208 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2012 International Energy & Environment Foundation. All rights reserved. 

204 

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Oct Nov Dec Jan Feb Mar Apr May
Month

H
ea

tin
g 

En
er

gy
 D

em
an

d 
[M

W
h]

-

5,000

10,000

15,000

20,000

25,000

C
um

ul
at

iv
e 

H
ea

tin
g 

En
er

gy
 D

em
an

d 
[M

W
h]

IWEC
TMY-2
Cumul. IWEC
Cumul. TMY-2

 
 

Figure 10. Monthly and cumulative heating energy demand of the University Campus buildings using the 
TMY-2 and IWEC weather files 

 
The respective results of the cooling period are shown in Figure 11. The energy demand of the months 
May, June and August results higher according to the TMY-2 weather file, while for July, September and 
October the energy demands according to IWEC result higher. It is reminded at this point that, belonging 
to an educational establishment, the majority of the buildings is not in operation during the second half of 
July and the first half of August. Consequently, the resulting energy demand of these months, the hottest 
during the cooling period, can be considered as typical only for the university buildings. 
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Figure 11. Monthly and cumulative cooling energy demand of the University Campus buildings using the 
TMY-2 and IWEC weather files 



International Journal of Energy and Environment (IJEE), Volume 3, Issue 2, 2012, pp.195-208 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2012 International Energy & Environment Foundation. All rights reserved. 

205

Figure 12 summarizes the annual energy demand estimations for heating and cooling of all buildings of 
the Aristotle University Campus. It can be clearly seen that the estimations based on the TMY-2 weather 
file are higher by 11.1% and 3.8%, for heating and cooling respectively. Based on the CDD differences 
presented in Figures 5-6, the discrepancy for the cooling period was expected higher, the result however 
being justified considering the fact that the majority of the buildings is not in operation during the hottest 
period (mid July to mid August) of the year. 
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Figure 12. Annual energy demand of the buildings groups using the TMY-2 and IWEC weather files 
 

5. Comparisons with actual data and discussion  
As already mentioned, all buildings have central heating installation, the required hot water being 
produced by boilers. There are three natural gas fired boiler systems: one supplying the Engineering 
School complex, one for the Education School and a central one, for all other buildings (district heating). 
The above estimated heating energy demands can be translated in estimated natural gas consumption per 
boiler system, using the appropriate overall annual average efficiency, accounting for both boiler 
efficiency [29] and distribution system losses [30], and then be compared to the actual natural gas 
consumption, determined from the relevant invoices. This comparison is shown in Figure 13, the actual 
consumption being the annual three years average (2005-2007). 
As it can be clearly seen, the fuel consumption estimation based on the TMY-2 weather file is always 
significantly closer to the actual one. Taking into account the area being heated by each boiler system, 
the deviation between estimated and actual fuel consumption as a fuction of the heated area can be 
plotted (Figure 14). 
Clearly, the fuel consumption is underestimated in all cases. The underestimation is significantly higher 
in the IWEC weather file case, ranging from 12 to 24%, while in the TMY-2 case it ranges from 1 to 
17%. It is of interest to note that the highest underestimation with both weather files results in the 
smallest boiler system case, that of the Education School, which heats a total of only 6,670 m2. This 
finding suggests that, apart from the climate data, the accuracy of estimation depends also on the size of 
the building, which obviously affects the relative significance of the statistically estimated parameters, 
namely the internal gains, which depend on the usage profile. 
Based on the above, it can be concluded that the results of energy consumption simulations are strongly 
affected by both the quality of the climate data used and the size of the simulation domain. 
Unfortunately, due to the cooling system used in the vast majority of buildings (split-type local air-to-air 
heat pumps) it was not possible to verify the cooling energy demand estimations. 
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Figure 13. Total and per boiler system actual and estimated annual natural gas consumption for heating 
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Figure 14. Underestimation of fuel consumption as a function of the area served by the boiler system 
 

6. Conclusion 
A large scale simulation of heating and cooling energy demands estimation, concerning educational 
buildings, is reported. The commercially available EnergyPlus software was used in combination with 
the ASHRAE IWEC (GRC - IWEC 166220 WMO) and the METEONORM TMY2 (TMY-2 16622 
WMO) weather files for Thessaloniki – Greece area. 
The exercise showed that for the specific area (Thessaloniki) and the specific use of buildings 
(educational establishment), the resulting energy consumption for both heating and cooling is lower with 
the IWEC weather file. 
The comparison of the results with the actual fuel consumption for heating showed that the estimations 
based on the TMY-2 weather file is much closer to reality, with the underestimation depending on the 
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size of the simulation domain, ranging from 1 to 17% - the highest value resulting for the smallest 
building. 
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