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Abstract 
This paper investigates the natural convection unsteady magnetohydrodynamic mass transfer flow of a 
viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence 
of constant suction and heat sink. Using multi parameter perturbation technique, the governing equations 
of the flow field are solved and approximate solutions are obtained. The effects of the flow parameters on 
the velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer 
are discussed with the help of figures and table. It is observed that a growing magnetic parameter or 
Schmidt number or heat sink parameter leads to retard the transient velocity of the flow field at all points, 
while the Grashof numbers for heat and mass transfer show the reverse effect. It is further found that a 
growing Prandtl number or heat sink parameter decreases the transient temperature of the flow field at all 
points while the heat source parameter reverses the effect. The concentration distribution of the flow field 
suffers a decrease in boundary layer thickness in presence of heavier diffusive species (growing Sc) at all 
points of the flow field. The effect of increasing Prandtl number Pr is to decrease the magnitude of skin-
friction and to increase the rate of heat transfer at the wall for MHD flow, while the effect of increasing 
magnetic parameter M is to decrease their values at all points. 
Copyright © 2012 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
The phenomenon of natural convection flow with heat and mass transfer in presence of magnetic field 
has been given much importance in the recent years in view of its varied applications in science and 
technology. The study of natural convection flow finds innumerable applications in geothermal and 
energy related engineering problems. Such phenomena are of great theoretical as well as practical 
interest in view of their applications in diverse fields such as aerodynamics, extraction of plastic sheets, 
cooling of infinite metallic plates in a cool bath, liquid film condensation process and in major fields of 
glass and polymer industries. 
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In view of the above interests, Hashimoto [1] discussed the boundary layer growth on a flat plate with 
suction or injection. Sparrow and Cess [2] analyzed the effect of magnetic field on a free convection heat 
transfer. Gebhart and Pera [3] studied the nature of vertical natural convection flows resulting from the 
combined buoyancy effects of thermal and mass diffusion. Soundalgekar and Wavre [4] investigated the 
unsteady free convection flow past an infinite vertical plate with constant suction and mass transfer. 
Hossain and Begum [5] estimated the effect of mass transfer and free convection on the flow past a 
vertical plate. Bestman [6] analyzed the natural convection boundary layer flow with suction and mass 
transfer in a porous medium. Pop et al. [7] reported the conjugate MHD flow past a flat plate.  
Singh [8] discussed the effect of mass transfer on free convection MHD flow of a viscous fluid. Raptis 
and Soundalgekar [9] analyzed the steady laminar free convection flow of an electrically conducting 
fluid along a porous hot vertical plate in presence of heat source/sink. Na and Pop [10] explained the free 
convection flow past a vertical flat plate embedded in a saturated porous medium. Takhar et al. [11] 
discussed the unsteady flow and heat transfer on a semi-infinite flat plate in presence of magnetic field. 
Chowdhury and Islam [12] developed the MHD free convection flow of a visco-elastic fluid past an 
infinite vertical porous plate. Raptis and Kafousias [13] analyzed the heat transfer in flow through a 
porous medium bounded by an infinite vertical plate under the action of a magnetic field. Sharma and 
Pareek [14] described the steady free convection MHD flow past a vertical porous moving surface. Das 
and his co-workers [15] estimated numerically the effect of mass transfer on unsteady flow past an 
accelerated vertical porous plate with suction. Recently, Das and his associates [16] investigated the 
hydromagnetic convective flow past a vertical porous plate through a porous medium in presence of 
suction and heat source.  
In the present problem, we analyze the natural convection unsteady magnetohydrodynamic mass transfer 
flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in 
presence of constant suction and heat sink. Approximate solutions are obtained for the velocity, 
temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter 
perturbation technique and the effects of the important parameters on the flow field are analyzed with the 
help of figures and a table. 
 
2. Formulation of the problem 
Consider the unsteady natural convection mass transfer flow of a viscous incompressible electrically 
conducting fluid past an infinite vertical porous plate in presence of constant suction and heat sink and a 
transverse magnetic field B0. The x′-axis is taken in vertically upward direction along the plate and the y′-
axis is chosen normal to it. Neglecting the induced magnetic field and the Joulean heat dissipation and 
applying Boussinesq’s approximation the governing equations of the flow field are given by:  
Continuity equation: 
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Energy equation: 
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Concentration equation: 
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The initial and boundary conditions of the problem are: 
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Introducing the following non-dimensional variables and parameters, 
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in Eqs. (2)-(4) under boundary conditions (5), we get 
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where g is the acceleration due to gravity, ρ is the density, σ is the electrical conductivity, ν is the 
coefficient of kinematic viscosity, β is the volumetric coefficient of expansion for heat transfer, β* is the 
volumetric coefficient of expansion for mass transfer, ω is the angular frequency, η0 is the coefficient of 
viscosity, k is the thermal diffusivity, T is the temperature, T'w is the temperature at the plate, T'∞ is the 
temperature at infinity, C is the concentration, C'w is the concentration at the plate, C'∞ is the 
concentration at infinity, Cp is the specific heat at constant pressure, D is the molecular mass diffusivity, 
Gr is the Grashof number for heat transfer, Gc is the Grashof number for mass transfer, M is the magnetic 
parameter, Pr is the Prandtl number, , S is the heat sink parameter, cS  is the Schmidt number and Ec is the 
Eckert number.  
The corresponding boundary conditions are:  
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3. Method of solution 
To solve Eqs. (7)-(9), we assume ε  to be very small and the velocity, temperature and concentration 
distribution of the flow field in the neighbourhood of the plate as 
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Substituting Eqs. (11) - (13) in Eqs. (7) - (9) respectively, equating the harmonic and non-harmonic terms 
and neglecting the coefficients of 2ε , we get 
Zeroth order: 
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First order: 
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The corresponding boundary conditions are  
 

1101100 111000 ======= C,T,u,C,T,u:y , 
000000 111000 ======∞→ C,T,u,C,T,u:y . (20) 

 
Solving Eqs. (16) and (19) under boundary condition (20), we get 
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Using multi parameter perturbation technique and assuming cE <<1, we assume  
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Now using Eqs. (23)-(26) in Eqs. (14), (15), (17) and (18) and equating the coefficients of like powers of 

cE  and neglecting those of 2
cE , we get the following set of differential equations: 

Zeroth order: 
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The corresponding boundary conditions are, 
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First order: 
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The corresponding boundary conditions are, 
 

00000 11110101 ===== T,u,T,u:y ; 
0000 11110101 ====∞→ T,u,T,u:y . (36) 

 
Solving Eqs. (27)-(30) subject to boundary condition (31) we get, 
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Solving Eqs. (32)-(35) subject to boundary condition (36) we get, 
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Substituting the values of C0 and C1 from Eqs. (21) and (22) in Eq. (13) the solution for concentration 
distribution of the flow field is given by 
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3.1 Skin friction 
The skin friction at the wall is given by  
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3.2 Heat flux     
The heat flux at the wall in terms of Nusselt number is given by 
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4. Results and discussions 
The problem natural convection unsteady magnetohydrodynamic mass transfer flow of a viscous 
incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence of 
constant suction and heat sink has been investigated. The governing equations of the flow field are 
solved employing multi parameter perturbation technique and the effects of the flow parameters on the 
velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer in 
the flow field are analyzed and discussed with the help of velocity profiles 1-5, temperature profiles 6-7, 
concentration distribution 8 and Table 1 respectively.  
 
4.1 Velocity field 
The velocity of the flow field suffers a substantial change in magnitude with the variation of the flow 
parameters. The important parameters affecting the velocity of the flow field are magnetic parameter M, 
Grashof numbers for heat and mass transfer Gr, Gc; heat sink parameter S and Schmidt number Sc. 
Figures 1-5 discuss the effects of these parameters on the velocity of the flow field. 
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Figure 1. Velocity profiles against y for different values of M with Gr=3, Gc=3, S= -0.1, Sc=0.60, Pr=0.71, 
Ec=0.002, ω=5.0, ε=0.2, ωt=π/2 
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The effect of magnetic parameter M on the velocity field is discussed in Figure 1. Curve with M=0 
corresponds to the case of non-MHD flow. Comparing the curves of Figure 1, it is observed that a 
growing magnetic parameter retards the velocity of the flow field at all points due to the dominant effect 
of the Lorentz force acting on the flow field. In Figures 2 and 3, we observe the effect of Grashof 
numbers for heat and mass transfer Gr, Gc respectively on the velocity field. Curves with Gr <0 
correspond to heating of the plate, while those with Gr >0 correspond to cooling of the plate. Analyzing 
the curves of Figures 2 and 3, we come to a conclusion that both the parameters Gr and Gc enhance the 
velocity of the field at all points. Figure 4 elucidates the effect of heat sink/source parameter S on the 
velocity of the flow field. Curves with S<0 and S>0 correspond to the presence of heat sink and heat 
source respectively in the flow field. The heat source parameter (S>0) is found to accelerate the velocity 
of the flow field at all points while the presence of heat sink (S<0) reverses effect. The effect of Schmidt 
number Sc on the velocity field is discussed in Figure 5. The heavier diffusive species (growing Sc) has a 
decelerating effect on the velocity of the flow field at all points.  
 
 

 

 
 

Figure 2. Velocity profiles against y for different values of Gr with Gc=3, M=1, S= -0.1, Sc=0.60, Pr=0.71, 
Ec=0.002, ω=5.0, ε=0.2, ωt=π/2 
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Figure 3. Velocity profiles against y for different values of Gc with Gr=3, M=1, S= -0.1, Sc=0.60, Pr=0.71, 
Ec=0.002, ω=5.0, ε=0.2, ωt=π/2 
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Figure 4. Velocity profiles against y for different values of S with Gr=3, Gc=3, Ec=0.002, M=1, Sc=0.60, 
Pr=0.71, ω=5.0, ε=0.2, ωt=π/2 
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Figure 5. Velocity profiles against y for different values of Sc with Gr=3, Gc=3, Ec=0.002, M=1, S= -0.1, 
Pr=0.71, ω=5.0, ε=0.2, ωt=π/2 

 
4.2 Temperature field 
The temperature field is found to change appreciably with the variation of Prandtl number Pr and heat 
sink parameter S. These variations have been shown in Figures 6 and 7 respectively. On close 
observation of the curves of both the figures, we notice that the effect of increasing the magnitude of heat 
sink parameter and the Prandtl number is to decrease the temperature of the flow field at all points; while 
the heat source parameter reverses the effect. 
 

 
 

Figure 6. Temperature profiles against y for different values of Pr with Gr=3, Gc=3, M=1, S= -0.1, 
Ec=0.002, ω=5.0, ε=0.2, ωt=π/2 
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Figure 7. Temperature profiles against y for different values of S with Gr=3, Gc=3, M=1, Ec=0.002, 
ω=5.0, ε=0.2, ωt=π/2, Pr=0.71 

 
4.3 Concentration distribution 
Figure 8 depicts the concentration distribution in presence of foreign species such as H2, He, H2O 
vapour, NH3 and CO2 in the flow field with Sc= 0.22, 0.30, 0.60, 0.78 and 1.004 respectively. The 
concentration distribution of the flow field suffers a decrease in boundary layer thickness in presence of 
heavier diffusive species (growing Sc) at all points of the flow field. It is further observed that heavier the 
diffusive species, the sharper is the reduction in the concentration boundary layer thickness of the flow 
field. 
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Figure 8. Concentration profiles against y for different values of Sc with ω=5.0, ε=0.2, ωt=π/2 
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4.4 Skin friction and rate of heat transfer 
Variations in the values of skin friction τ and the heat flux i. e. rate of heat transfer Nu against the Prandtl 
number Pr for different values of magnetic parameter M are entered in Table 1 keeping other parameters 
of the flow field constant. A growing Prandtl number Pr increases the skin friction for non-MHD flow 
and decreases it at the wall in case of MHD flow. On the other hand, a growing magnetic parameter M 
decreases the effect at all points. The effect of increasing Prandtl number Pr is to increase the rate of heat 
transfer at the wall, while a growing magnetic parameter M leads to decrease its value at all points. 

 
Table 1. Variation in the values of skin friction τ and the rate of heat transfer Nu against Pr for different 

values of M   with S= -0.1, Gr=3, Gc =3, Sc=0.60, Ec=0.002, ω=5.0, ε=0.2, ωt=π/2 
 

M =0 M =0.1 M =5.0 M =20.0  
Pr τ Nu τ Nu τ Nu τ Nu 
0.71 11.6271 1.6423 11.3191 1.4287 6.8552 -0.3046 4.1016 -0.2363 
2 12.1139 3.2345 8.1317 2.3879 5.4092 1.7626 3.5516 -1.5804 
7 16.1056 -9.1989 5.9856 -8.9066 4.2561 -5.4226 2.8680 -4.9101 
9 18.1481 -10.812 5.5672 -10.508 4.0844 -6.8703 2.7593 -6.2451 

 
 
8. Conclusion 
We present below the following results of physical interest on the velocity, temperature, concentration 
distribution, skin friction and the rate of heat transfer at the wall of the flow field. 

1. A growing magnetic parameter M or Schmidt number Sc or heat sink parameter S leads to retard 
the transient velocity of the flow field at all points.  

2. The effect of increasing Grashof number for heat transfer Gr and mass transfer Gc is to enhance 
the transient velocity of the flow field at all points. 

3. An increase in Prandtl number Pr decreases the transient temperature of the flow field at all 
points while a growing heat sink parameter S reverses the effect.   

4. A heavier diffusive species (growing Sc) has a sharper reduction in the concentration boundary 
layer thickness at all points of the flow field.  

5. A growing Prandtl number Pr increases the skin friction for non-MHD flow and decreases it at 
the wall in case of MHD flow. On the other hand, a growing magnetic parameter M decreases the 
effect at all points. 

6. The effect of increasing Prandtl number Pr is to enhance the magnitude of rate of heat transfer at 
the wall,   while a growing magnetic parameter M leads to decrease its value at all points. 
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