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Abstract

This paper investigates the natural convection unsteady magnetohydrodynamic mass transfer flow of a
viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence
of constant suction and heat sink. Using multi parameter perturbation technique, the governing equations
of the flow field are solved and approximate solutions are obtained. The effects of the flow parameters on
the velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer
are discussed with the help of figures and table. It is observed that a growing magnetic parameter or
Schmidt number or heat sink parameter leads to retard the transient velocity of the flow field at all points,
while the Grashof numbers for heat and mass transfer show the reverse effect. It is further found that a
growing Prandtl number or heat sink parameter decreases the transient temperature of the flow field at all
points while the heat source parameter reverses the effect. The concentration distribution of the flow field
suffers a decrease in boundary layer thickness in presence of heavier diffusive species (growing S) at all
points of the flow field. The effect of increasing Prandtl number P, is to decrease the magnitude of skin-
friction and to increase the rate of heat transfer at the wall for MHD flow, while the effect of increasing
magnetic parameter M is to decrease their values at all points.
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1. Introduction

The phenomenon of natural convection flow with heat and mass transfer in presence of magnetic field
has been given much importance in the recent years in view of its varied applications in science and
technology. The study of natural convection flow finds innumerable applications in geothermal and
energy related engineering problems. Such phenomena are of great theoretical as well as practical
interest in view of their applications in diverse fields such as aerodynamics, extraction of plastic sheets,
cooling of infinite metallic plates in a cool bath, liquid film condensation process and in major fields of
glass and polymer industries.
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In view of the above interests, Hashimoto [1] discussed the boundary layer growth on a flat plate with
suction or injection. Sparrow and Cess [2] analyzed the effect of magnetic field on a free convection heat
transfer. Gebhart and Pera [3] studied the nature of vertical natural convection flows resulting from the
combined buoyancy effects of thermal and mass diffusion. Soundalgekar and Wavre [4] investigated the
unsteady free convection flow past an infinite vertical plate with constant suction and mass transfer.
Hossain and Begum [5] estimated the effect of mass transfer and free convection on the flow past a
vertical plate. Bestman [6] analyzed the natural convection boundary layer flow with suction and mass
transfer in a porous medium. Pop et al. [7] reported the conjugate MHD flow past a flat plate.

Singh [8] discussed the effect of mass transfer on free convection MHD flow of a viscous fluid. Raptis
and Soundalgekar [9] analyzed the steady laminar free convection flow of an electrically conducting
fluid along a porous hot vertical plate in presence of heat source/sink. Na and Pop [10] explained the free
convection flow past a vertical flat plate embedded in a saturated porous medium. Takhar et al. [11]
discussed the unsteady flow and heat transfer on a semi-infinite flat plate in presence of magnetic field.
Chowdhury and Islam [12] developed the MHD free convection flow of a visco-elastic fluid past an
infinite vertical porous plate. Raptis and Kafousias [13] analyzed the heat transfer in flow through a
porous medium bounded by an infinite vertical plate under the action of a magnetic field. Sharma and
Pareek [14] described the steady free convection MHD flow past a vertical porous moving surface. Das
and his co-workers [15] estimated numerically the effect of mass transfer on unsteady flow past an
accelerated vertical porous plate with suction. Recently, Das and his associates [16] investigated the
hydromagnetic convective flow past a vertical porous plate through a porous medium in presence of
suction and heat source.

In the present problem, we analyze the natural convection unsteady magnetohydrodynamic mass transfer
flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in
presence of constant suction and heat sink. Approximate solutions are obtained for the velocity,
temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter
perturbation technique and the effects of the important parameters on the flow field are analyzed with the
help of figures and a table.

2. Formulation of the problem

Consider the unsteady natural convection mass transfer flow of a viscous incompressible electrically
conducting fluid past an infinite vertical porous plate in presence of constant suction and heat sink and a
transverse magnetic field Bo. The x’-axis is taken in vertically upward direction along the plate and the y'-
axis is chosen normal to it. Neglecting the induced magnetic field and the Joulean heat dissipation and
applying Boussinesq’s approximation the governing equations of the flow field are given by:

Continuity equation:

av 1 L}
—=0 = v =-vp (constant), 1)

Momentum equation:

ou’ ,ou’ 8%’ ., s, .\ oBZ
=V a—y'=v6y'2 +gp(T' -T.)+gp (C'-CL)- > u’, )

Energy equation:

’ ' 201 N\ 2
£+v’£:ka T + u +S'(T-T",), 3)
ot' oy’ ay'?  Cyloy

Concentration equation:

oc' ,oC’ o%C’
—+Vv'—=D . (4)
ot oy 8y’2
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The initial and boundary conditions of the problem are:

u'=0,v'=—vy,T' =Ty, +&(T, ~T, " ,C'=C,, +£(C}, —~CL )" at y'=0,
u—>0, T'»T.,, C'-»C., a Y o, (5)

Introducing the following non-dimensional variables and parameters,

2
IVI t/v/ ’ ' ' Y 2
_ y 0 ,t: 0 ,C():4V620 ,u:u—,,V:n_O, T:T Tw ’ C: Cl Cgc: ,M _ & L,
Y 4v Vo Vo P T,-T, Cw—Cs p vy
v v wp(T, -T. wp (cl, -C., 48"y vy?
Pt 5ot o, = LT o WP L) a5y o ®
k D A A Vi C,(Ty-T.)

in Egs. (2)-(4) under boundary conditions (5), we get

16u ou o°u
- = 4G, T+G.C-Mu
40t oy oy? " ¢ ’ ()
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19T AT 12 1o () @
40t oy P ooy? 4 d
19c_ac 1o o
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where g is the acceleration due to gravity, p is the density, o is the electrical conductivity, v is the
coefficient of kinematic viscosity, £ is the volumetric coefficient of expansion for heat transfer, f* is the
volumetric coefficient of expansion for mass transfer, w is the angular frequency, #; is the coefficient of
viscosity, k is the thermal diffusivity, T is the temperature, T',, is the temperature at the plate, T',, is the
temperature at infinity C is the concentration, C'y, is the concentration at the plate, C', is the
concentration at infinity C, is the specific heat at constant pressure, D is the molecular mass diffusivity,
G is the Grashof number for heat transfer, G is the Grashof number for mass transfer, M is the magnetic

parameter, P, is the Prandtl number, , S is the heat sink parameter, S, is the Schmidt number and E; is the

Eckert number.
The corresponding boundary conditions are:

U=0T =1+ C=1+e'" at y=0,
u—>0T->0, C—-0 as y > . (10)

3. Method of solution
To solve Egs. (7)-(9), we assume € to be very small and the velocity, temperature and concentration
distribution of the flow field in the neighbourhood of the plate as

u(y,t)=ug(y)+ e u,(y), (12)
T(y.t)=To(y)+ e T, (y), (12)
C(y,t)=Cq(y)+ee'Cy(y). (13)
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Substituting Egs. (11) - (13) in Egs. (7) - (9) respectively, equating the harmonic and non-harmonic terms

and neglecting the coefficients ofe?, we get
Zeroth order:

Ug +Us —Muy =-G, T, —G.Cy,
P.S aug )
Ty +P Ty +——T, =—P, EC(—OJ ,
4 oy
Cl+5,Cf=0.
First order:

u{+%;(%?+M]u1:—GJE—GJ%,

T/+PT,/ - %(ioo ~S)T, =-2P. EC(%J( ou, ]

oy \ oy

@S,
4

C/+S.C,—-2¢C, =0,

The corresponding boundary conditions are

y=0:u,=07T,=1C,=1u, =0,T, =1,C, =1,
y—>w:u,=0T,=0C,=0u,=0T =0C, =0.

Solving Egs. (16) and (19) under boundary condition (20), we get
C,=¢e",

C,=e™

Using multi parameter perturbation technique and assuming E_<<1, we assume

Uy =Ugp + Ecum’
To = Too + EcT01'
u, =u, +E.u,;,

T1 = Tm + EcTn'

(14)

(15)

(16)

(17

(18)

(19)

(20)

(21)

(22)

(23)
(24)
(25)

(26)

Now using Egs. (23)-(26) in Egs. (14), (15), (17) and (18) and equating the coefficients of like powers of

E. and neglecting those of EZ, we get the following set of differential equations:

Zeroth order:

n 1
Ugo +Ugo —MUgg =-G; Ty —G¢Cy,

(27)
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n ’ ia)
Ugp +Ugg _(M +TJU10 =-G,Typ —G.Cy, (28)
P.S
" ' Pr H
T + P T, —T(Ia)— S)Ty =0. (30)

The corresponding boundary conditions are,

y=0:Uy, =0T, =1u, =0T, =1;

y > © Uy =0T, =0,u, =0T, =0. (31)

First order:

Ugr +Ug —Mug =-G, Ty, (32)
" ’ iw

U11+U11_(M +TJU11 =-G, Ty, (33)
” r P S ’

T + P Top + STTOl =-Pk (Uoo )2 ) (34)
) , P ou ou

T +PT) — Tr('w ~ STy, =-2P, (a_soj(a_;oj . (35)

The corresponding boundary conditions are,

y=0:u, =0T, =0u, =0T, =0;
y > o:u, =0T, =0u, =0T, =0. (36)

Solving Eqgs. (27)-(30) subject to boundary condition (31) we get,

Upy = Ae ™Y + Aje Y — Ae™™Y (37)
T =€ ™, (38)
Upg = Age ™Y + Age™™Y — Age™Y (39)
T,=6e"™". (40)

Solving Egs. (32)-(35) subject to boundary condition (36) we get,
TO]_ — ale_zscy + aze_2m3y + a3e_2m5y + a4e_(m3+sc)y + a5e_(n1+sc)y + a6e_(m3+nl)y _ a7e_m3y, (41)

T, =B,e M*ms)y 1 g g-(Mmims)y , g g-(Minsly | g o-(MsScly | g g-(MtScly | g g(n3+Sc)y

" B7e—(m5+n1)y n Bse*(m1+n1)y " Bge—(n1+n3)y —Be ™Y, (42)
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—b.e 2S¢y ~2mgy ~2my ~(mg+Sc)y ~(n1+Sc)y
Ug; =b,e77¢7 +bye +bse +b,e ¢ +bge ¢

+bge (MM 4 p e MY _p e MY (43)

Uy = Dle*(m3+m5)y + Dze*(m1+m3)y + Dge*(m3+n3)y + D4e*(m5+5c)y + Dse*(m1+5c)y + Dﬁe*(n3+3c)y

+Dye M+l pog=(Mm)y  p g=(Mems)y \ p g MY _p Y (44)

Substituting the values of Cy and C; from Egs. (21) and (22) in Eq. (13) the solution for concentration
distribution of the flow field is given by

C=e> yeele™™ (45)

3.1 Skin friction
The skin friction at the wall is given by

5]
T, =| —
ay y=0

=-myA, — S A, + Ay —E[20,S, +2b,my +2byn; +b, (Mg +S,)+Dbs(n; +S;)
+bg (Mg +1n; )+b;my —bgn, |+ e’ {~mgA, —m, As +nyAg —E[(my +mg)D,
+(my +m3)D, +(mg +n3)D5 +(mg +S,)D, +(my +S, )Ds +(ng + S, )Dsg
+(mg +ny)D7 +(My +ny)Dg +(ny +n3)Dg +msDyg _nSDll]}' (46)

3.2 Heat flux
The heat flux at the wall in terms of Nusselt number is given by

(2]
oy y=0

=-m, —E.[2a,S, +2a,m, +2a;m; —a,(m; +S, )+ag(n, +S.)+ag (Mg +n; )—a,m;]
+ge'! {—m5 - Ec[(ms +m5)51 +(my +mg )B, +(mg +nz)Bg +(ms +S. )B, +(my +Sc)Bs
+(n3 +Sc)Bs +(m5 +Ny )B7 +(m1 +Ny )Bs +(n1 +N3 )Bg —-msBy, ]} (47)

where

m, :%[sc +4/S2 +iazSC]m2 =%[—sc +4/S2 +ia)SC},m3 :%[Pr +4/P2 —spr} ,my =%[— P, +4P2-SP, }
ms :%[Pr +4/P2 —Pr(S—ia))}mG :%[—P, +4/P?2 —Pr(S—ia))]nl =%[1+\/l+4M ],n2 :%[—1+\/1+4M ]
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A=A+A A= - 1 Ag = 2 A =A+A L = - ,
(ng —ms Xn, +ms) (ng —my )ng +my) (mg —2S Jm, +25;)
_ —RmA Penf AS _2AAMP, 2P,S; Ay Agy

az—
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B __ 2P. A, Aymg B. — 2P. A Agmgn, B. - 2P, S A, Asmy
4 — y D3 — 1 5 — S S ]
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2P, A; Agnin G.a
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4. Results and discussions

The problem natural convection unsteady magnetohydrodynamic mass transfer flow of a viscous
incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence of
constant suction and heat sink has been investigated. The governing equations of the flow field are
solved employing multi parameter perturbation technique and the effects of the flow parameters on the
velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer in
the flow field are analyzed and discussed with the help of velocity profiles 1-5, temperature profiles 6-7,
concentration distribution 8 and Table 1 respectively.

4.1 Velocity field

The velocity of the flow field suffers a substantial change in magnitude with the variation of the flow
parameters. The important parameters affecting the velocity of the flow field are magnetic parameter M,
Grashof numbers for heat and mass transfer G;, G; heat sink parameter S and Schmidt number S..
Figures 1-5 discuss the effects of these parameters on the velocity of the flow field.

Figure 1. Velocity profiles against y for different values of M with G,=3, G.=3, S=-0.1, S;=0.60, P,=0.71,
E.=0.002, «=5.0, &=0.2, at=n/2
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The effect of magnetic parameter M on the velocity field is discussed in Figure 1. Curve with M=0
corresponds to the case of non-MHD flow. Comparing the curves of Figure 1, it is observed that a
growing magnetic parameter retards the velocity of the flow field at all points due to the dominant effect
of the Lorentz force acting on the flow field. In Figures 2 and 3, we observe the effect of Grashof
numbers for heat and mass transfer G, G, respectively on the velocity field. Curves with G, <0
correspond to heating of the plate, while those with G, >0 correspond to cooling of the plate. Analyzing
the curves of Figures 2 and 3, we come to a conclusion that both the parameters G, and G, enhance the
velocity of the field at all points. Figure 4 elucidates the effect of heat sink/source parameter S on the
velocity of the flow field. Curves with S<0 and S>0 correspond to the presence of heat sink and heat
source respectively in the flow field. The heat source parameter (S>0) is found to accelerate the velocity
of the flow field at all points while the presence of heat sink (S<0) reverses effect. The effect of Schmidt
number S; on the velocity field is discussed in Figure 5. The heavier diffusive species (growing S;) has a
decelerating effect on the velocity of the flow field at all points.

Figure 2. Velocity profiles against y for different values of G, with G.=3, M=1, S=-0.1, S.=0.60, P,=0.71,
E.=0.002, «=5.0, &=0.2, wt=n/2
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Figure 3. Velocity profiles against y for different values of G, with G,=3, M=1, S=-0.1, S.=0.60, P,=0.71,
E.=0.002, «=5.0, &=0.2, at=n/2

Figure 4. Velocity profiles against y for different values of S with G,=3, G.=3, E.=0.002, M=1, S.=0.60,
P,=0.71, &=5.0, &=0.2, awt=n/2
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Figure 5. Velocity profiles against y for different values of S, with G,=3, G.=3, E.=0.002, M=1, S=-0.1,
P,=0.71, &=5.0, &=0.2, awt=n/2

4.2 Temperature field

The temperature field is found to change appreciably with the variation of Prandtl number P, and heat
sink parameter S. These variations have been shown in Figures 6 and 7 respectively. On close
observation of the curves of both the figures, we notice that the effect of increasing the magnitude of heat
sink parameter and the Prandtl number is to decrease the temperature of the flow field at all points; while
the heat source parameter reverses the effect.

1.2

0.8 -

T 0.6 -

0.4 -

0.2 1

Figure 6. Temperature profiles against y for different values of P, with G,=3, G.=3, M=1, S=-0.1,
E.=0.002, @=5.0, &=0.2, at=n/2
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1.2

——5=05

Figure 7. Temperature profiles against y for different values of S with G,=3, G.=3, M=1, E.=0.002,
@=5.0, &=0.2, wt=n/2, P,=0.71

4.3 Concentration distribution

Figure 8 depicts the concentration distribution in presence of foreign species such as H,, He, H,O
vapour, NH; and CO; in the flow field with S;= 0.22, 0.30, 0.60, 0.78 and 1.004 respectively. The
concentration distribution of the flow field suffers a decrease in boundary layer thickness in presence of
heavier diffusive species (growing S.) at all points of the flow field. It is further observed that heavier the
diffusive species, the sharper is the reduction in the concentration boundary layer thickness of the flow

field.
1.2
1
0.8 -
C 0.6 -
——S5c=0.22
04 9/ —o—s¢=0.30
——Sc=0.60
0.2 4| —5Sc=0.78
—¥*— Sc=1.004
0 1 1 1 1
0 0.4 0.8 1.2 1.6

Figure 8. Concentration profiles against y for different values of S; with @=5.0, ¢=0.2, wt=n/2
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4.4 Skin friction and rate of heat transfer

Variations in the values of skin friction t and the heat flux i. e. rate of heat transfer N, against the Prandtl
number P, for different values of magnetic parameter M are entered in Table 1 keeping other parameters
of the flow field constant. A growing Prandtl number P, increases the skin friction for non-MHD flow
and decreases it at the wall in case of MHD flow. On the other hand, a growing magnetic parameter M
decreases the effect at all points. The effect of increasing Prandtl number P, is to increase the rate of heat
transfer at the wall, while a growing magnetic parameter M leads to decrease its value at all points.

Table 1. Variation in the values of skin friction t and the rate of heat transfer N, against P, for different
values of M with S=-0.1, G,=3, G. =3, S.=0.60, E.=0.002, #=5.0, &=0.2, at=n/2

M =0 M =0.1 M =5.0 M =20.0
Pr T Ny T Ny T Ny T Ny
0.71 11.6271 1.6423  11.3191 1.4287 6.8552 -0.3046 4.1016 -0.2363
2 12,1139 3.2345  8.1317 23879 5.4092 17626 3.5516 -1.5804
7 16.1056 -9.1989 59856 -8.9066 4.2561  -5.4226 2.8680 -4.9101
9 18.1481 -10.812 55672 -10.508 4.0844 -6.8703 2.7593  -6.2451

8. Conclusion
We present below the following results of physical interest on the velocity, temperature, concentration
distribution, skin friction and the rate of heat transfer at the wall of the flow field.

1. A growing magnetic parameter M or Schmidt number S; or heat sink parameter S leads to retard
the transient velocity of the flow field at all points.

2. The effect of increasing Grashof number for heat transfer G, and mass transfer G, is to enhance
the transient velocity of the flow field at all points.

3. An increase in Prandtl number P, decreases the transient temperature of the flow field at all
points while a growing heat sink parameter S reverses the effect.

4. A heavier diffusive species (growing S¢) has a sharper reduction in the concentration boundary
layer thickness at all points of the flow field.

5. A growing Prandtl number P, increases the skin friction for non-MHD flow and decreases it at
the wall in case of MHD flow. On the other hand, a growing magnetic parameter M decreases the
effect at all points.

6. The effect of increasing Prandtl number P, is to enhance the magnitude of rate of heat transfer at
the wall, while a growing magnetic parameter M leads to decrease its value at all points.
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