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Abstract 
The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a 
constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two 
adiabatic branches is viewed as a production process with exergy as its output. The finite time 
exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate 
optimization criterion as the objective. The relations between the profit rate and the temperature ratio of 
working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, 
as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this 
paper is to search the compromised optimization between economics (profit rate) and the utilization 
factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, 
which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis 
and optimization of the model are carried out in order to investigate the effect of cycle process on the 
performance of the cycles using numerical example. The results obtained herein include the performance 
characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles. 
Copyright © 2013 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Recently, the analysis and optimization of thermodynamic cycles for different optimization objectives 
has made tremendous progress by using finite-time thermodynamic theory [1-14]. Finite-time 
thermodynamics is a powerful tool for the performance analysis and optimization of various cycles. For 
refrigeration cycles, the performance analysis and optimization have been carried out by taking cooling 
load, coefficient of performance (COP), specific cooling load, cooling load density, exergy destruction, 
exergy output, exergy efficiency, and ecological criteria as the optimization objectives in much work, 
and many meaningful results have been obtained [15-27]. 
A relatively new method that combines exergy with conventional concepts from long-run engineering 
economic optimization to evaluate and optimize the design and performance of energy systems is 
exergoeconomic (or thermoeconomic) analysis [28, 29]. Salamon and Nitzan’s work [30] combined the 
endoreversible model with exergoeconomic analysis. It was termed as finite time exergoeconomic 
analysis [31-45] to distinguish it from the endoreversible analysis with pure thermodynamic objectives 
and the exergoeconomic analysis with long-run economic optimization. Similarly, the performance 
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bound at maximum profit was termed as finite time exergoeconomic performance bound to distinguish it 
from the finite time thermodynamic performance bound at maximum thermodynamic output. 
There have been some papers concerning finite time exergoeconomic optimization for refrigeration 
cycles [31, 33, 38]. A further step in this paper is to build a universal endoreversible steady flow 
refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-
capacity cooling branches and two adiabatic branches with the consideration of heat resistance loss. The 
finite time exergoeconomic performance of the universal endoreversible refrigeration cycles is studied. 
The relations between the profit rate and the temperature ratio of working fluid, between the COP and the 
temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the 
cycle are derived. The focus of this paper is to search the compromise optimization between economics 
(profit rate) and the energy utilization factor (COP) for the endoreversible refrigeration cycles. Moreover, 
performance analysis and optimization of the model are carried out in order to investigate the effect of 
cycle process on the performance of the cycles using numerical examples. The results obtained herein 
include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and 
Brayton refrigeration cycles. 
 
2. Cycle model 
An endoreversible steady flow referigeration cycle operating between an infinite heat sink at temperature 

HT  and an infinite heat source at temperature LT  is shown in Figure 1. In this T-s diagram, the processes 
between 2 and 3 , as well as between 5 and 1 are two adiabatic branches; the process between 1 and 2 is a 
heating branch with constant thermal capacity (mass flow rate and specific heat product) inC ; the 
processes between 3 and 4, and 4 and 5 are two cooling branches with constant thermal capacity 1outC  and 

2outC . In addition, the heat conductances (heat transfer coefficient-area product) of the hot- and cold-side 
heat exchangers are 1HU , 2HU , and LU , respectively. The heat exchanger inventory is taken as a constant, 
that is 1 2H H L TU U U U+ + = . This cycle model is more generalized. If inC , 1outC  and 2outC  have different values, 
the model can become various special endoreversible refrigeration cycle models. 
 

 
 

Figure 1. T-s diagram for universal endoreversible cycle model 
 
3. Performance analysis 
According to the properties of working fluid and the theory of heat exchangers, the rate of heat transfer 

1HQ  and 2HQ released to the heat sink and the rate of heat transfer LQ  (i. e. the cooling load R ) supplied by 
heat source are given, respectively, by 
 

1 2H H HQ Q Q= +  (1) 
 

. .

1 1 3 4 1 1 3( ) ( )H out out H HQ mC T T mC E T T= − = −  (2) 
 

. .

2 2 4 5 2 2 4( ) ( )H out out H HQ mC T T mC E T T= − = −  (3) 
 

. .

2 1 1( ) ( )L in in L LR Q mC T T mC E T T= = − = −  (4) 
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where m  is mass flow rate of the working fluid, 1HE , 2HE  and LE  are the effectivenesses of the hot- and 
cold-side heat exchangers, and are defined as 
 

1 11 exp( )H HE N= − − , 2 21 exp( )H HE N= − − , 1 exp( )L LE N= − −  (5) 
 
where 1HN , 2HN  and LN  are the numbers of heat transfer units of the hot- and cold-side heat exchangers, 
and are defined as 
 

.

1 1 1/( )H H outN U mC= ,
.

2 2 2/( )H H outN U mC= ,
.

/( )L L inN U mC=  (6) 
 
where 1HU , 2HU  and LU  are the heat conductance, that is, the product of heat transfer coefficient α  and 
heat transfer surface area F  
 

1 1 1H H HU Fα= , 2 2 2H H HU Fα= , L L LU Fα=  (7) 
 
The COP ε  of the cycle is 
 

( ) ( ) 11
1 21 1H L H H LQ Q Q Q Qε

−−= − = + −⎡ ⎤⎣ ⎦  (8) 
 
Combining equations (1) - (3) and (8) gives 
 

4 1 1(1 )H H H LT E T E xT= + −  (9) 
 

( )5 1 2 1 2 1 2(1 )(1 )H H L H H H H HT E E xT E E E E T= − − + + −  (10) 
 

( )1
1 ( ) 1L L HT T a xT T ε −= − − +  (11) 

 
( ) ( )1

2 1(1 ) 1 ( ) 1L L L L L L HT E T E T T a E xT T ε −= + − = − − − +  (12) 
 
where ( ) ( )1 1 2 2 11out H out H H in La C E C E E C E= + −⎡ ⎤⎣ ⎦ , 3 Lx T T=  
Consider the endoreversible cycle 1 2 3 4 5 1− − − − − . Applying the second law of thermodynamics gives 
 

( ) ( ) ( )2 1 1 3 4 2 4 5ln ln ln 0in out outS C T T C T T C T T∆ = − − =  (13) 
 
From the equation (13), one has  
 

1 2 2 1

2 4 5 1 3 0
out out out out

in in in

C C C C
C C CT T T TT
−

− =  (14) 
 
Combining equations (9) - (14) gives 
 

( )
( ) ( ) ( ) ( )

1

1 1

1

1 11

out in

out in out in

C C
L L L

C C C C
L H L L L L L

T a T xT

a xT T E a xT T a T xT
ε

−
=

⎡ ⎤− − − − +⎣ ⎦
 (15) 

 
( )

( ) ( )

1

1

1

11

out in

out in

C C
L L L

L in L C C
L L

T a T xT
R Q mC E

E a xT
−

= =
− −

 (16) 

 
where ( ) ( ) ( )1 2 2

1 1 1 1 2 1 2 1 21 (1 )(1 )out out in out inC C C C C
H L H H H H L H H H H Ha E xT E T E E xT E E E E T

−
= − + − − + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

The required power input P  of the cycle is 
 

( ) ( )( ) ( ) ( )1 1

1 11out in out inC C C C
H L in L L H L L L L LP Q Q mC E a xT T T a T xT E a xT⎡ ⎤⎡ ⎤= − = − − − − −⎢ ⎥⎣ ⎦⎣ ⎦

 (17) 
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Assuming the environment temperature is 0T , the rate of exergy output of the refrigeration cycle is: 
 

0 0 1 2( 1) ( 1)L L H H L HA Q T T Q T T Q Qη η= − − − = −  (18) 
 
where iη  is the Carnot coefficient of the reservoir i ( )1, 2i = . 
So the rate of exergy output of the refrigeration cycle is 
 

( ) ( ) ( ) ( ){ }1 1

1 1 1 21out in out inC C C C
in L L L L L L L HA mC E T a T xT E a xT a xT Tη η⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦ ⎣ ⎦  (19) 

 
Assuming that the prices of exergy output and the work input be 1ψ  and 2ψ , the profit rate of the 
refrigeration cycle is: 
 

1 2A Pπ ψ ψ= −  (20) 
 
Substituting equations (17) and (19) into equation (20) yields 
 

( ) ( ) ( ) ( ) ( ){ }1 1

1 1 2 1 1 1 2 21 ( )out in out inC C C C
in L L L L L L L HmC E T a T xT E a xT a xT Tπ ψ η ψ ψ η ψ⎡ ⎤ ⎡ ⎤= + − − − − + −⎣ ⎦ ⎣ ⎦  (21) 

 
4. Discussions 
Equations (15) and (21) are universal relations governing the profit rate function and the COP of the 
steady flow refrigeration cycle with considerations of heat transfer loss. They include the finite time 
exergoeconomic performance characteristic of many kinds of refrigeration cycles. 
When 1 2in out outC C C C= = =  ( VC  or PC ), equations (15) and (21) become: 
 

( )
( ) ( ) ( ) ( )2 2 2 1

L L H L

L H H L H L L H L H L L H L

T E T xT
xT T E E E E xT E E T T E T xT

ε
−

=
− − − + − − −⎡ ⎤⎣ ⎦

 (22) 

 
( ) ( ) ( ) ( )1

2 1 1 2 1 2 21H L HmCE xT Tπ ψ η ψ ε ψ η ψ−⎡ ⎤= − + + − +⎣ ⎦  (23) 
 
Equations (22) and (23) are the finite time exergoeconomic performance characteristic of a steady flow 
endoreversible Otto ( VC C= ) or Brayton ( PC C= ) refrigeration cycle. 
When 1 2out out vC C C= =  and in pC C= , 1 0HE = , and equations (15) and (21) become: 
 

( )
( ) ( ) ( ) ( )

1
1

1 1
1 11

k
L L L

k k
L H L L L L L

T a T xT

a xT T E a xT T a T xT
ε

′ −
=

⎡ ⎤′ ′′ − − − − +⎢ ⎥⎣ ⎦

 (24) 

 
( ) ( ) ( ) ( ) ( ){ }1 1

1 1 2 1 1 1 2 21 ( )k k
p L L L L L L L HmC E T a T xT E a xT a xT Tπ ψ η ψ ψ η ψ⎡ ⎤ ⎡ ⎤′ ′ ′= + − − − − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (25) 

 
where ( )2H La E kE′ = , [ ]11 2 2(1 ) k

L H L H Ha xT E xT E T′ = − + . 
Equations (24) and (25) are the finite time exergoeconomic performance characteristic of a steady flow 
endoreversible Atkinson refrigeration cycle.  
When 1 2out out pC C C= =  and in vC C= , 1 0HE = , and equations (15) and (21) become: 
 

( )
( ) ( ) ( ) ( )

1
1

1 11

k
L L L

k k
L H L L L L L

T a T xT

a xT T E a xT T a T xT
ε

′′ −
=

⎡ ⎤′′ ′′′′ − − − − +⎢ ⎥⎣ ⎦

 (26) 

 
( ) ( ) ( ) ( ) ( ){ }1 1 2 1 1 1 2 21 ( )k k

v L L L L L L L HmC E T a T xT E a xT a xT Tπ ψ η ψ ψ η ψ⎡ ⎤ ⎡ ⎤′′ ′′ ′′= + − − − − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (27) 

 
where 2H La kE E′′ = , [ ]1 2 2(1 ) k

L H L H Ha xT E xT E T′′ = − + . 
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Equations (26) and (27) are the finite time exergoeconomic performance characteristic of a steady flow 
endoreversible Diesel refrigeration cycle. 
When 1out pC C= , 2out vC C=  and in vC C= , equations (15) and (21) become: 
 

( )
( ) ( ) ( ) ( )

1
1

1 11

k
L L L

k k
L H L L L L L

T a T xT

a xT T E a xT T a T xT
ε

′′′ −
=

⎡ ⎤′′′ ′′′′′′ − − − − +⎢ ⎥⎣ ⎦

 (28) 

 
( ) ( ) ( ) ( ) ( ){ }1 1 2 1 1 1 2 21 ( )k k

v L L L L L L L HmC E T a T xT E a xT a xT Tπ ψ η ψ ψ η ψ⎡ ⎤ ⎡ ⎤′′′ ′′′ ′′′= + − − − − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (29) 

 
where ( )1 2 11H H H La kE E E E′′′ = + −⎡ ⎤⎣ ⎦ , ( ) ( ) ( )1

1 1 1 1 2 1 2 1 21 (1 )(1 )
k

H L H H H H L H H H H Ha E xT E T E E xT E E E E T
−′′′ = − + − − + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

Equations (28) and (29) are the finite time exergoeconomic performance characteristic of a steady flow 
endoreversible Dual refrigeration cycle. 
When 1 2in out outC C C= = →∞ , equations (15) and (21) are the finite time exergoeconomic performance 
characteristic of the endoreversible Carnot refrigeration cycle [31, 38]. 
Equations (15) and (21) are the major performance relations for the endoreversible refrigeration cycle 
coupled to two constant-temperature reservoirs. They determine the relations between the COP and the 
temperature ratio of the working fluid, between the profit rate and the temperature ratio of the working 
fluid, as well as between the profit rate and the COP. Finding the optimum f  ( L Hf U U= ) with the 
constraint of 1 2H H LU U U+ + = H L TU U U+ = , one may obtain the optimal profit rate ( optπ ) and the optimal COP 
for the fixed temperature ratio of the working fluid. The optimal COP is a monotonically increasing 
function of the temperature ratio of the working fluid, while there exists a maximum profit rate for an 
optimal temperature ratio of the working fluid. Maximizing optπ  with respect to x  by setting 0opt xπ∂ ∂ =  in 
Eq. (21) yields the maximum profit rate maxπ  and the optimal temperature ratio of the working fluid optx . 
Furthermore, substituting optx  into equation (15) after optimizing L HU U  yields mε , which is the finite-time 
thermodynamic exergoeconomic bound.  
The idea mentioned above may be applied to various endoreversible cycles, including Brayton cycle by 
setting in out PC C C= = or Otto cycle by setting in out vC C C= = . For the endoreversible Brayton or Otto 
refrigeration cycle, when 2H L TU U U= = , the profit rate approaches its optimum value for a given COP. 
The relation between the optimal profit rate and COP is: 
 

( ) ( ) ( )1
1 1 2 1 2 21

11 {exp[ (2 )] 1} {exp[ (2 )] 1}
1opt L H T TmC T T U mC U mCπ ε ψ η ψ ψ η ψ

ε
−

−
⎡ ⎤⎡ ⎤= + − + − + − +⎢ ⎥⎣ ⎦ +⎣ ⎦

 (30) 

 
Maximizing optπ  with respect to ε  by setting 0optπ ε∂ ∂ =  in Eq. (25) directly yields the maximum profit 
rate and the corresponding optimal COP mε , that is, the finite-time thermodynamic exergoeconomic 
bound: 
 

( ) ( ){ } ( )( ) ( ){ }0.5 0.5
max 1 1 2 1 2 2 1 1 2 1 2 2 1 2 2/

{exp[ (2 )] 1} {exp[ (2 )] 1}

H L H L H

T T

mC T T T T T

U mC U mC

π ψ η ψ ψ η ψ ψ η ψ ψ η ψ ψ η ψ= + + − + + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− +
 (31) 

 
( ) ( ){ }{ } 10.5

1 1 2 1 2 2 1m H LT Tε ψ η ψ ψ η ψ
−

= + + −⎡ ⎤⎣ ⎦  (32) 

 
The finite-time thermodynamic exergoeconomic bound ( mε ) is different from the classical reversible 
bound and the finite-time thermodynamic bound at the maximum cooling load output. It is dependent on 

HT , LT  , 0T  and 2 1ψ ψ . 
Note that for the process to be potential profitable, the following relationship must exist: 2 10 1ψ ψ< < , 
because one unit of work input must give rise to at least one unit of exergy output. As the price of exergy 
output becomes very large compared with the price of the work input, i.e. 2 1 0ψ ψ → , equation (21) 
becomes 
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1Aπ ψ=  (33) 
 
That is the profit rate maximization approaches the exergy output maximization, where A  is the rate of 
exergy output of the universal endoreversible refrigeration cycle. 
On the other hand, as the price of exergy output approaches the price of the work input, i.e. 2 1 1ψ ψ → , 
equation (21) becomes 
 

1 0Tπ ψ σ= −  (34) 
 
where σ  is the rate of entropy production of the universal endoreversible refrigeration cycle. That is the 
profit rate maximization approaches the entropy production rate minimization, in other word, the 
minimum waste of exergy. Equation (34) indicates that the refrigerator is not profitable regardless of the 
COP is at which the refrigerator is operating. Only the refrigerator is operating reversibly ( Cε ε= ) will the 
revenue equal the cost, and then the maximum profit rate will equal zero. The corresponding rate of 
entropy production is also zero. 
  
5. Numerical examples 
To illustrate the preceding analysis, numerical examples are provided. In the calculations, it is set that 

0 298.15T K= , 0HT T= , 
.

1.1165 /m kg s= , 0.9H LE E= = , 0.7166 /( )vc kJ kg K= ⋅ , 1.0032 /( )pc kJ kg K= ⋅ , and 1.4H LT Tτ = = . A 
dimensionless profit rate is defined as 2( )L L VT E Cπ ψΠ = . 
Figures 2-6 show the effects of the price ratio on the dimensionless profit rate versus temperature ratio of 
the working fluid and the COP versus temperature ratio of the working fluid for Otto, Diesel, Atkinson, 
Dual and Brayton refrigeration cycles. Figure 7 shows the effects of the price ratio on the dimensionless 
profit rate versus the COP for five cycles.  
From the Figures 2-5, one can see that the COP decreases monotonically when x  increases for any one 
of the five cycles, while the profit rate versus x  is parabolic-like one. When 1 2/ 1.0ψ ψ = , the profit rate 
maximization approaches zero, this means that the refrigerator is not profitable in any case. From Figure 
7, one can see that , when 1 2/ 1.0ψ ψ = , the profit rate approaches to zero as the COP increases; when 

1 2 1ψ ψ > , the curves of the dimensionless profit rate versus the COP are parabolic-like ones. The COP at 
the maximum profit rate is the finite-time exergoeconomic performance bound. Therefore, from the 
above analysis, one can find that the effect of the price ratio 1 2ψ ψ  on the finite-time exergoeconomic 
performance bound is larger: when 1 2/ 1.0ψ ψ = , the profit rate approaches to zero as the COP increases; 
when 1 2 1ψ ψ , the finite-time exergoeconomic performance bound of the endoreversible refrigerator 
approaches to the finite-time thermodynamic performance bound. Therefore, the finite-time 
exergoeconomic performance bound ( πε ) lies between the finite-time thermodynamic performance 
bound and the reversible performance bound. πε  is related to the latter two through the price ratio, and 
the associated COP bounds are the upper and lower limits of πε . 
 

 
Figure 2. Dimensionless profit rate and the COP characteristic for Otto cycle 
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Figure 3. Dimensionless profit rate and the COP characteristic for Atkinson cycle 

 

 
Figure 4. Dimensionless profit rate and the COP characteristic for Diesel cycle 

 

 
Figure 5. Dimensionless profit rate and the COP characteristic for Dual cycle 

 

 
Figure 6. Dimensionless profit rate and the COP characteristic for Brayton cycle 
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Figure 7. Dimensionless profit rate versus the COP characteristic for five cycles 

 
6. Conclusion 
Economics plays a major role in the thermal power and cryogenics industry. This paper combines finite 
time thermodynamics with exergoeconomics to form a new analysis of universal endoreversible 
refrigeration cycle model. One seeks the economic optimization objective function instead of pure 
thermodynamic parameters by viewing the refrigerator as a production process. It is shown that the 
economic and thermodynamic optimization converged in the limits 1 2 0ψ ψ →  and 1 2 1ψ ψ → . Analysis and 
optimization of the model are carried out in order to investigate the effect of cycle process on the 
performance of the cycles using numerical examples. The results obtained herein include the 
performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton 
refrigeration cycles.  
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