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Abstract 
The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat 
transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated 
to conclude the advantage of high thermal emissivity. The paper presents also some results from a study 
of the thermal insulation performance of air cavities bounded by thin reflective material layer "ε = 0.05". 
The results show that the most economical cavity configuration depends on the thermal emissivity and 
the insulation material used. 
Copyright © 2013 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
The concept of sustainable building incorporates and integrates a variety of strategies during the design, 
construction and operation of building projects. The use of building materials represents one important 
strategy in the design of a building. An assessment of green materials may involve an evaluation of 
energy efficiency. The evolution of construction entails the application of new building materials in the 
envelopes of buildings. Apparently, the high thermal resistances of building envelopes were qualified as 
an indicator of high energy efficiency of these buildings. The calculation of equivalent thermal 
resistances leads to deduce immediately the values of thermal resistances of walls. It will be respected to 
acomply with Ohm's law but with a thermal analogy. The application of these concepts based on 
arrangements of layers and materials relative to the direction of the heat flow [1-5]. 
In Ghardaïa region, stone, cinderblock and hollow brick are the most used construction materials due to 
their availability. The walls were fitted with air cavities which the masonry unit has the same shape of a 
cinder block and a hollow brick. In order to increase the thermal resistance in a closed air cavity bounded 
by ordinary building materials, various studies are employed to predict Grashof number in enclosed 
cavities with vertical angles of inclination. The emissivity influence of the cavities inner surfaces on the 
thermal resistance of the masonry unit was also studied. 
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2. Natural convection in a cavity filled with air 
A literature search showed that in the case of natural convection in a cavity filled with air, for Ra < 103, 
conductive heat transfer is the dominated heat transfer mode. Increasing the Rayleigh number intensifies 
the air the flow of air loop in the boundary layer near the vertical walls. The flow changes from laminar 
"103 < Ra < 109 " to turbulent flow which is accompanied by a significant increase in the Nusselt number. 
This search covers over 40 different items to derive correlations between Nu and Ra in a closed cavity 
empty. The choice of the Nusselt number is deduced according the value of the Rayleigh number. 
However, according to Rayleigh expression, Ra depends on air temperature T and the temperature 
difference ∆θ between surface and air in the cavity. A suggested methodology to solve these problems 
requiring calculations of convective heat transfer coefficient using empirical correlations is as follows: 
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Convection heat transfer may be classified according to the nature of the flow for free or natural 
convection the flow is induced by buoyancy forces, which arise from density differences caused by 
temperature variations in the fluid. So in these cavities, the heat is first transferred from the wall surface 
to the air by convection, then by convection to the second wall surface [6-8].  
 
2.1 Cinderblock 
The cinderblock is a molded masonry unit which has a facing on each of two opposite sides of a wall. 
This is the case of a real material consisting of several layers. Figure 1 gives a detailed sizing to calculate 
the equivalent thermal resistance of a cinderblock. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1. Dimensions (in centimeters) and equivalent circuit of a cinderblock 

 
The convective resistance RCV is related to a parameter called Heat Transfer Coefficient. To calculate 
RCV, we must calculate the convective transfer coefficient h in the cinderblock. This coefficient depends 
entirely on the Grashof number Gr. A mathematical study was made, provides simplified diagrams to 
describe succinctly the variation of the convective resistance, and which will serve us for the choice and 
proper use of the heat transfer coefficient. Figure 2 (a, b, c) were obtained by considering that the air 
temperature inside the cavity is between 0 and 60 °C. 
The convective resistance of the air cavity depends particularly on the temperature difference between 
the air and the wall. The temperature effect is not very important compared to ∆θ. The movement of 
trapped air due to temperature gradient starts in increased the coefficient of heat transfer. This increase in 
heat transfer takes place due to convective heat transfer taking place in addition to conductive heat 
transfer. 
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Figure 2. (a) variation of RCV as function of T and ∆θ; (b) RCV as a function of ∆θ for T ranging from 0 to 
60 ° C; (c) zoom 
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2.2 Hollow brick 
The hollow brick is used as building material and it is a rectangular parallelepiped of raw clay and sun-
dried or baked it. The clay is often mixed with sand. Therefore, environmental and structural 
performance may be different in elements constructed of hollow brick from those constructed of 
structural cinderblock or solid brick. The dimensions and the equivalent circuit diagram of a hollow brick 
are given below in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3. Dimensions (in centimeters) and equivalent circuit of a hollow brick 

 
This following study addresses an idea on the laminar natural convection within this shape of cavity. 
Similarly to the previous example, Figure 4 (a, b) drawn below describe the thermal resistance of the air 
cavity in the hollow brick according to the air average temperature in the cavity and the temperature 
difference ∆θ. 
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Figure 4. (a) variation of RCV as function of T and ∆θ; (b) RCV as a function of ∆θ for T ranging from 0 to 
60 ° C 

 
We note from these results that the resistance of the convective air cavity in the hollow brick is greater 
than that in the cinderblock. On the other hand, the influence level of the temperature T on the convective 
resistance is more important compared to the first case, but we always keep in mind that this resistance 
depends primarily on the temperature difference ∆θ. 
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3. Heat transfer mechanisms and emissivity effect in air cavities  
Heat is transferred across an air space by a combination of conduction, convection and radiation. Heat 
transfer by conduction is inversely proportional to depth of the air space. Convection is mainly 
dependant on the height of the air space and its depth. Heat transfer by radiation is relatively independent 
of both thickness and height, but is greatly dependent on the reflectivity of the internal surfaces. All three 
mechanisms are dependent on the surface temperatures. The mathematical treatment of air cavity would 
be similar to that of insulation if natural convection in air is neglected. The thickness of air cavity is a 
very important design parameter that governs its effectiveness by controlling the heat transfer coefficient 
as in case of insulation. 
As shown in Figure 5 long wave radiation is the dominating heat transfer mechanism in closed air 
cavities bounded by ordinary building materials with emissivity ≈ 0.9. By use of a reflective foil, with 
emissivity 0.05, at one face of the cavity the heat flow by radiation is dramatically reduced to 
approximately 5 % as shown in Figure 6. The heat transfer by convection does increase with the 
thickness of the cavity and will limit the thermal resistance values of such cavities in roofs and walls. 
The heat transfer has been calculated according to ISO 15099:2003. Main conditions for the calculation 
are: 
 Total thickness of conventional insulation and air cavity is constant 200 mm 
 Thermal conductivity of the conventional insulation are 0,037 W/mK 
 No air leakages through the cavity or the structure 
 The emissivity of the reflective layer has been set to 0.05. 
 Indoor and outdoor temperatures are +20 °C and 0 °C respectively [9, 10]. 

 
4. Optimization of the cavity thickness 
Cavity walls are among the types of wall structures used in Algeria. Cavity walls are lighter and have 
higher thermal resistance than solid masonry walls. Without insulation, the whole cavity becomes 
essentially an air space of finite thickness across which heat is transferred by conduction, convection and 
radiation. Therefore, the effective thermal resistance of the air space is usually much less than that of an 
air layer in a pure heat conduction mode. To increase the resistance of an air space, air must not be 
allowed to circulate in order to suppress convection which is not easy to achieve. 
In the majority of cases considered, an insulation material of certain type is installed either at the middle 
of the cavity or on one side; the optimum thickness of this insulation layer will be determined by the 
calculations. In the present study, this wall assembly is enclosed by a 10 mm thick cement mortar on 
each side. We seek the optimum thickness of the air cavity of these two types of building materials under 
these conditions, taking into account whenever the emissivity. Figures 7 and 8 show explicitly the 
thickness effect of the cavity on the thermal resistance of these building elements according to ISO 
15099:2003. 
 
 

 
 

Figure 5. Estimated heat transfer in a closed air cavity bounded by ordinary materials ε = 0.9 
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Figure 6. Estimated heat transfer in a closed air cavity bounded by a reflective material at one face ε = 
0.05 

 

 
 

Figure 7. Thermal resistance as a function of the air cavity thickness, case of a cinderblock 
 

 
 

Figure 8. Thermal resistance as a function of the air cavity thickness, case of a cinderblock 
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In Figure 7, an attenuation of the thermal resistances, caused by increasing the air thickness is observed 
that from the optimum thickness e = 1.4 cm if the emissivity is of the order of 0.9. However, if the wall 
of the cavity is low emissivity or provided for example with a reflective film "ε = 0.05", the optimum 
thickness increases to have a value equivalent to 8.2 cm. If we place ourselves in the second case (Figure 
8: air cavity in hollow brick bounded by ordinary materials "ε = 0.9"), the maximum thermal resistance is 
achieved for an optimal thickness of 0.68 cm. However, when the closed air cavity is bounded by a 
reflective material at one face "ε = 0.05", the optimal thermal resistance corresponds to the thickness of 
2.36 cm. 
 
5. Conclusion 
The most performant type of insulation and its optimum thickness were determined for cavity walls 
under steady conditions. Besides, when selecting insulation material can be very important according to 
type of application and must be considered. When aluminum foil for example is used as the facing 
material, reflective thermal insulation can stop 97% of radiant heat transfer. 
The resistance of a closed air cavity can be equivalent with a conventional thermal insulation layer, with 
a thickness that depends on the used building materials. Increasing the air cavity thickness beyond these 
limits will not increase the thermal resistance of the cavity due to the development of natural convection. 
The thermal resistance of concrete block and brick hollow depend mainly on thermal emissivity, the 
thickness of the air cavity and on the temperature difference between surface and air of this cavity. 
Therefore, cavities broader than a calculated threshold are normally not preferred. However, if more 
thickness of air cavity is required for getting heavy insulation, by putting partitions in the main broad 
cavity multiple cavities can be used as an alternative. 
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