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Abstract

In this study a non-parametric method of Data Envelopment Analysis (DEA) is used to estimate the
energy efficiency and greenhouse gas emissions reduction of nectarine orchard holders in Sari region of
Iran. Data were collected using a face-to-face questionnaire method from 45 orchardists. The results
showed that based on constant returns to scale model, 24.4% of nectarine orchards were efficient, though
based on variable returns to scale model it was 26.7%. The average of technical, pure technical and scale
efficiency of nectarine orchards were 0.85, 0.99 and 0.86, respectively. By following the
recommendations of this study about 1309 MJ ha™ (3.25%) of total input energy could be saved. From
total saved energy, electricity by 24.8% had highest share, followed by diesel fuel by 22.2%, fertilizers
by 16.6% and water for irrigation by 11.8%. Also, energy ratio, energy productivity and net energy
gained could improve by 3.68%, 2.78% and 9.03%, respectively. The results indicated that the total GHG
emission of present and optimum orchards was found to be about 1266 and 1221 kgCOZEq,ha'l,
respectively. Moreover, the total GHG emissions can be reduced about 45 kgCOZQq,ha'lin nectarine
production by converting inefficient units to efficient ones.

Copyright © 2014 International Energy and Environment Foundation - All rights reserved.

Keywords: Data envelopment analysis; Greenhouse gas emissions; Energy efficiency; Energy indices;
Nectarine.

1. Introduction

Nectarines (P. persica var. nucipersica) are essentially the same fruit as peach, the primary difference is
that nectarines are smooth-skinned and peaches are fuzzy. China, Italy, the United States of America,
Spain and Greece are the main peach producers in the world respectively, followed by Iran, ranked in 6"
place, also total of peach and nectarine production of Iran was about 498346 tons [1]. The energy is
defined as the capacity to do work at the heart of all human activities, especially those concerning the
production of goods and services [2]. The energy in agriculture is important in terms of crop production
and agro processing for value adding. Human, animal and machinery are extensively used for crop
production in agriculture [3]. Energy use in agricultural production has been increasing faster in
comparison with many other sectors of the world economy because agricultural productions are
becoming more mechanized, an increase in commercial fertilizers and other non-traditional farming
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methods [4]. Intensive energy consumption as well as reducing the known energy resources is the key
factor to develop the philosophy of optimum energy consumption. Optimum use of energy helps to
achieve increased production and contributes to the economy, portability and competitiveness of
agricultural sustainability of rural communities [5]. Data Envelopment Analysis (DEA) is a non-
parametric technique of frontier estimation which is used extensively in many settings for measuring the
efficiency and benchmarking of decision making units (DMUs).The main advantage of non-parametric
method of DEA compared to parametric ones is that it assumes neither a preconceived functional
relationship imposed between inputs and outputs, nor the prior information about weights of inputs and
outputs in contrast to parametric statistical approaches [6]. The enhancement of the greenhouse effect
leads to increasing Earth-surface temperatures and global climate change. Global climate change and
population growth are placing new pressures on food production systems; demanding increases food
security while safeguarding the natural resources by reducing the environmental footprints [7]. The
reduction of energy consumption is tantamount to reduction of greenhouse gas (GHG) emissions in
agricultural activity. Because both items have direct relationship with input usage in agricultural
activities. Several investigations had been done on energy use optimization and GHG emissions
reductions using DEA such as: Khoshnevisan et al [8] investigated the optimization of energy
consumption and GHG emissions reduction for wheat production. Nabavi-Pelesaraei et al. [9]
determined and compared the efficient and inefficient orange producers in terms of energy consumption
and GHG emissions. They determined the effect of energy optimization on GHG emissions for
converting inefficient units to efficient ones. In another study, the DEA method was applied to improve
energy efficiency and GHG emissions in cucumber production [10].

With considering lack of any study on energy use efficiency and GHG emissions in nectarine production
by using DEA, attempt has been made to determine the technical, pure technical and scale efficiency of
nectarine orchards in lran. Therefore, the present study was undertaken to discriminate efficient
orchardists from inefficient ones and optimize the energy inputs and GHG emissions reductions on
nectarine production in the Sari region of Iran.

2. Materials and methods

2.1 Sampling design

This study was conducted in the Sari Region, in the north of Iran within 35° 58 and 36° 50 north latitude
and 52° 56 and 53° 59 east longitudes [11].The surveyed region had homogenous conditions for orchard
establishment with regards to climatic conditions, topography and soil type. The initial data were
collected from nectarine orchardists using face-to-face questionnaire in the production year
2012/2013.The sample size was determined by simple random sampling method [12]. Accordingly, the
sample size was calculated as 39. In order to increase the accuracy, the sample was considered 45 in this
study. It’s should be noted, all of the orchards were single-crop nectarine orchards.

2.2 Energy equivalents of inputs and output

Nectarine is an important agricultural commodity in sari region. Very well-drained soils, abundant
nitrogen fertility, plenty of summer water, fruit thinning, and pest control sprays to prevent peach leaf
curl and brown rot are major requirements for nectarine orchards. Nectarines orchards required energy
input from seven sources include human power, machinery, diesel fuel, pesticides, chemical fertilizers,
water for irrigation and electricity. Also, nectarine yield is the only energy output. In order to calculate
the amount of energy used by each orchardist, each input source was converted into its energy equivalent
so the information of Table 1 is used. The input and output were calculated per hectare for each orchard
and then these data were multiplied by the coefficient of energy equivalent (Table 1). As can be seen in
Table 1, the total energy consumption and nectarine yield were calculated about 40275 MJ ha™ and
54851 kg ha, respectively.

2.3 Data envelopment analysis (DEA)

DEA was first introduced as a general method for classifying a population of observations and was
designed as a decision support tool for complex systems, where a large number of mutual interacting
variables are involved [22]. DEA is a data-oriented technique used for estimation of resource use
efficiency and ranking production units on the basis of their performances. Production units are
termedDMUs in DEA terminology. In this study two main model of DEA include: CCR (Charnes-
Cooper—Rhodes) and BCC (Banker-Charnes-Cooper) were used. The CCR model is built on the
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assumption of constant returns to scale (CRS) of activities and the BCC model is built on the assumption
of variable returns to scale (VRS) of activities[23]. Also, the efficiency of orchards was discussed based
on different forms of DEA includes: Technical Efficiency (TE), Pure Technical Efficiency (PTE) and
Scale Efficiency (SE). The input variables were defined as: human power, machinery, pesticides, water
for irrigation, electricity, chemical fertilizers and diesel fuel, while, the nectarine yield was the single
output variable.

Table 1. Energy coefficients and energy inputs/output in various operations of nectarine production

Inputs (unit) Energy equivalent  Quantity per Total energy
(MJ unit™) unit area (ha) equivalent (MJ ha*)
A. Inputs
1. Human labor (h) 1.96 [13] 1339 2624
2. Machinery (h) 62.7 [9] 61.5 3855
3. Diesel fuel (1) 56.3 [14] 141 7929
4. Chemical fertilizers (kg)
(a) Nitrogen 66.1 [15] 147 9800
(b) Phosphate (P,Os) 12.4 [16] 98.1 1220
(c) Potassium (K;0) 11.1[17] 175 1957
(d) Sulphur (S) 1.1[15] 89.3 100
5. Farmyard manure (kg) 0.3 18] 6000 1800
6. Pesticides (kg)
(a) Insecticide 101.2[19] 8.23 834
(b) Herbicide 238[19] 2.10 500
(c) Fungicide 92 [20] 9.78 900
7. Water for irrigation (m®) 1.1[18] 3676 3749
8. Electricity (kWh) 11.9 18] 420 5007
The total energy input (MJ) 40275
B. Output
1. Nectarine (kg) 1.9 [21] 28869 54851

2.4 Technical efficiency

Technical efficiency (global efficiency) is basically a measure by which DMUs are evaluated for their
performance relative to the performance of other DMUs in consideration. The technical efficiency can be
defined as follows (Eq. 5) [24, 25].

r=1

u1y1'+u2y2-+...+uy, Zur.yrj
TE]: J J n nj= (1)
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where, u,, is the weight (energy coefficient) given to output n; y,, is the amount of output n; v, is the
weight (energy coefficient) given to input n; x, is the amount of input »; » is number of outputs (» = 1,
2, .., n); sisnumberof inputs (s =/, 2, .., m) and j represents jthof DMUs (j =1, 2, . . ., k).

To solve Eq. (1), following Linear Programming (LP) was formulated:
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szxsj =1
s=1
u,20,v,20, and (iandj=1,2, 3, ... k)

where 6 is the technical efficiency, Model (3) is known as the input oriented CCR DEA model assumes
constant returns to scale (CRS) [26].

2.5 Pure technical efficiency

This model called BCC and calculates the technical efficiency of DMUs under variable return to scale
conditions. Pure technical efficiency can separate both technical and scale efficiencies. The main
advantage of this model is that scale inefficient orchards are only compared to efficient orchards of a
similar size [27]. The dual model is derived by construction from the standard inequality form of linear
programming [28]. It can be expressed by Dual Linear Program (DLP) as follows [15]:

Maximize Z=Uuy; — u;

Subjected to  vx;=1 3)
—vX+uY-u,e <0

v>0,u>0 and u, free in sing

where z and u, are scalar and free in sign; u and v are output and input weight matrixes, and Y and X are

the corresponding output and input matrixes, respectively. The letters x; and y; refer to the inputs and
output of its DMU.

2.6 Scale efficiency

Scale efficiency gives quantitative information of scale characteristics; it is the potential productivity
gain from achieving optimal size of a DMU. The relationship among the scale efficiency (SE), technical
efficiency (TE) and pure technical efficiency (PTE) can be expressed as follows [29]:

Technical efficiency

Scale efficiency = (4)

Puretechnical efficiency

Using scale efficiency helps orchardists to find the effect of orchard size on efficiency of production.
Simply, it indicates that some part of inefficiency refers to inappropriate size of DMU, and if DMU
moved toward the best size the overall efficiency (technical) can be improved at the same level of
technologies (inputs) [30]. If an orchard is fully efficient in both the technical and pure technical
efficiency scores, it is operating at the most productive scale size. On the other hand if an orchard has the
high pure technical efficiency score, but a low technical efficiency score, then it is locally efficient but
not globally efficient due to its scale size. Thus, it is reasonable to characterize the scale efficiency of a
DMU by the ratio of the two scores [31]. In the analysis of efficient and inefficient DMUs the energy
saving target ratio (ESTR) index can be used which represents the inefficiency level for each DMUs with
respect to energy use. The formula is as Eq. (5):

(Energy Saving T arg et)

ESTR = ! ©)

(Actual Energy Input )j

2.7 GHG emissions

Application of these inputs leads to emission of CO, and other GHGs. Thus, an understanding of the
emissions expressed in kg CE (kilograms of carbon equivalent) for different tillage operations, chemical
fertilizers and pesticides use, supplemental irrigation practices, harvesting and residue management is
essential to identifying C-efficient alternatives such as biofuels and renewable energy sources for
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seedbed preparation, soil fertility management, pest control and other orchard operations [8, 32]The
GHG emissions of nectarine production were computed by standard coefficient of CO, emissions for
each input (Table 2). The inputs were reasonable of GHG emissions in nectarine production including
diesel fuel, machinery, electricity, chemical fertilizers and pesticides. After determination of efficient and
inefficient units, the GHG emissions was calculated for optimal condition and compared with regular
condition. The purpose of this research was determination of GHG reductions using DEA.

Table 2. GHG emissions coefficients of agricultural inputs

Input Unit GHG Coefficient  Reference
(kg COyeq Unit™)
1. Machinery MJ 0.071 [33]
2. Diesel fuel L 2.76 [34]
3. Chemical fertilizers
(a) Nitrogen kg 13 [10]
(b) Phosphate (P,0s) kg 0.2 [9]
(c) Potassium (K,0) kg 0.2 [35]
4. Pesticides
(a) Insecticide kg 6.3 [32]
(b) Herbicide kg 5.1 [32]
(c) Fungicide kg 3.9 [32]
5. Electricity KW h 0.608 [9]

Basic information on energy inputs of nectarine production were entered into Excel 2013 spreadsheets,
and Frontier Analyst 4 software programs.

3. Results and discussion

3.1 Efficiency estimation of orchardists

The results of BCC and CCR models of DEA showed that from total of 45 orchardists, based on CCR
results, only 11 orchards were relatively efficient and their efficiency score were 1. Also, from the results
of BCC model 29 orchards were efficient. The average of pure technical efficiency and technical
efficiency calculated as 0.853 and 0.987, respectively. Moreover, the pure technical efficiency varied
from 0.88 to 1. Also, the minimum amount of the technical efficiency was calculated as 0.55.Mousavi-
Avval et al. [29] applied the non-parametric method of DEA to determine the technical and pure
technical efficiencies of orchardists for apple production in Iran; they found that TE and PTE were 0.79
and 0.90, respectively. Nabavi-Pelesaraei et al. [9] was computed average of TE, PTE and SE of about
for orange orchardists by DEA method, respectively. In another study on alfalfa production, TE, PTE and
SE of farmers were calculated as 0.84, 0.97 and 0.89, respectively [23]. The summarized statistics for the
three estimated measures of efficiency are presented in Table 3. The wide range in the technical
efficiency of farmers shows that all the farmers were not aware of the on time usage of the inputs and did
not apply them at the proper amount [6].Additionally, the calculation of scale efficiency shows that this
amount was measured as 0.86, implying that the average size of farms was in optimal size.

Table 3. Average technical, pure and scale efficiency of nectarine orchardists (45 units)

Particular Average SD Min Max
Technical efficiency 0.853 0.142 0.55 1
Pure technical efficiency 0.987 0.026 0.88 1
Scale efficiency 0.865 0.143 0.55 1

Results obtained by the application of the input-orientated BCC and CCR models are illustrated in Figure
1. The high average of scale efficiency shows that farmers utilize their inputs in the most productive
scale size and considerable saving in energy from the different sources were seen. The result showed that
12 orchard were Efficient. Also, 12 orchards were between 0.9 to < 0.99, 14 orchards were between 0.7
to < 0.89 and 7 remain orchard had the efficiency between 0.5 and 0.69.
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Figure 1. Efficiency score distribution of nectarine producers

3.2 Optimum energy requirement and saving energy

The optimum energy requirement and saving energy for nectarine production based on the results of
BCC model is shown in Table 4.The total energy saving was computed as 1309 MJ ha™. From Table 4 it
is clear that, the highest saving energy is provided by electricity (325MJ ha™) energy inputs, followed by
diesel fuel (291 MJ ha™) and chemical fertilizers (217 MJ ha™). Savings energy in the different sources is
possible by change in production procedure. For example many orchardists used pesticides to control
herbs. Plowing the soil with disk harrow or moldboard plow instead of chemical agents can be a useful
way to control herbs.

Table 4. Optimum energy requirement and saving energy for nectarine production

Input Optimum energy Saving energy  Saving Contribution to the total
requirement (MJ ha™)  (MJ ha™) energy (%) savings energy (%)
1. Human labor 2523 101 3.85 7.72
2. Machinery 3783 72 1.87 5.50
3. Diesel fuel 7638 291 3.67 22.2
4. Chemical fertilizers 12860 217 1.66 16.6
5. Farmyard manure 1754 46 2.56 3.51
6. Pesticides 2132 102 457 7.79
7. Water for irrigation 3595 154 411 11.8
8. Electricity 4682 325 6.49 24.8
Total energy 38966 1309 3.25 100

As can be seen in Table 4, that the highest contribution to the total savings energybelonged to electricity
with 24.8%, followed by diesel fuel with 22.2% and chemical fertilizers with 16.6%.The inappropriate
electro pumps for irrigation were the main reason forindiscriminate use of electricity. Also, the non-
standard machinery was effective in excessive consumption of diesel fuel and availability of chemical
fertilizers (specially nitrogen) was the reason for high consumption of chemical fertilizers in the studied
area. Accordingly, the selection of appropriate electro pumps, imports of standard machinery, timely
maintenance and reduction of chemical fertilizers (mainly nitrogen).

3.3 Improvements of energy indices

Energy indices such as energy ratio, energy productivity, and net energy gain, as well as the distribution
of sources according to direct, indirect, renewable and non-renewable energy groups are given in Table
5.
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Table 5. Improvement of energy indices for nectarine production

Items Unit Present quantity Optimum quantity  Difference (%)
Energy use - 1.36 1.41 3.68
Energy productivity kg MJ™ 0.72 0.74 2.78
Specific energy MJlkg?  1.40 1.35 -3.57
Net energy MJha' 14569 15884 9.03
Direct energy® MJha™ 19309 (47.9%)° 18438 (47.3%) -4.51
Indirect energy® MJ ha™ 20966 (52.1%) 20528 (52.7%) -2.09
Renewable energy®  MJ ha™ 8173 (20.3%) 7872 (20.2%) -3.68
Non-renewable MJ ha™* 32102 (79.7%) 31094 (79.8%) -3.14
Total energy input MJ ha™ 40275 (100%) 38966 (100%) -3.25

*Numbers in parentheses indicate percentage of total optimum energy requirement.
# Includes human labor, diesel fuel, water for irrigation, electricity.

® Includes chemical fertilizers, farmyard manure, pesticides, machinery.

¢ Includes human labor, farmyard manure, water for irrigation.

9 Includes diesel fuel, electricity, pesticides , chemical fertilizers, machinery.

The results showed that energy use efficiency (energy ratio) can be improved to the value of 1.41 by
increasing 3.68%. Also energy productivity, specific energy and net energy in target situation were found
to be 0.74 kg MJ?, 1.35 MJ kg™ and 15884 MJ ha™, that indicates improving of this indices about 2.78%,
-3.57% and -9.03%, respectively. In similar study on kiwifruit production the results showed that energy
use efficiency and net energy could be improved by 13.86% and 22.56%, respectively, if the farmers
applied the recommendations of study results [6]. Pahlavan et al. [36] in the study on rose production
showed that energy use efficiency and net energy could improve by 77.29% and 52.73%, respectively.

3.4 Setting realistic input levels for inefficient orchardists

In Table 6 the pure technical efficiency, actual energy use and suggested energy requirement from
different energy sources for individual inefficient nectarine orchards shown. Also, their average and
standard deviation values are presented. The values of optimal energy requirement are the
recommendations resulted from this study, indicating how individual inefficient production units can
reduce their source wise energy inputs by holding the output level constant. In the last column of Table 6
the ESTR percentage for inefficient orchards are given. As it can be seen, for inefficient production units,
ESTR ranges from 0% to 14.9% (orchard no. 14), with the average of 4.13%, indicating that between
inefficient production units, the units that have near to zero value of ESTR had better management on
input usage, and the no.14 unit was the most inefficient one.

3.5 Reduction of GHG emission

The amount of GHG emissions for present and optimum units is given in Table 7. The total GHG
emissions of present and optimum orchardists were calculated as 1266 and 1221 kgCOZeq,ha'l,
respectively. Accordingly, the total GHG emissions can be reduced about 45 using energy optimization
by DEA. So, it can be said the energy consumption had a direct relationship with GHG emissions. In a
similar study, Khoshnevisan et al., [8] reported the energy optimization by DEA would be decreased
total GHG emissions of wheat production about 40.3 kgCO,q ha™ by approach. In another study, Nabavi-
Pelesaraei et al. [9] applied DEA approach to determination of GHG emissions for efficient and
inefficient orange orchardists. They reportedthe different of GHG emissions between efficient and
inefficient units was about 184 kgCqu_ha'l.

Figure 2 displays the share of each input in potential of total GHG reduction in nectarine production. The
results illustrated the electricity with 35.6% had the highest share in GHG emissions reduction, followed
by diesel fuel with 33.3% and machinery with 11.1%. As can be deduced from the results, it’s suggested,
the appropriate electro pumps, standard machinery and timely maintenance was applied for nectarine
production in studied area.
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Table 7. Amounts of GHG emission for presentand target orchardists

Input Presentorchardists ~ Targetorchardists ~GHG reduction
(kg COyeq ha™) (kg COyeq ha™) (kg COyeq ha™)
1. Machinery 274 269 5
2. Diesel fuel 389 374 15
3. Chemical fertilizers
(a) Nitrogen 193 189 4
(b) Phosphate (P,0s)  19.6 19.3 0.3
(c) Potassium (K,0)  35.1 34.5 0.6
4. Pesticides
(@) Insecticide 51.9 49.5 2.4
(b) Herbicide 10.7 10.2 0.5
(c) Fungicide 38.2 36.4 1.8
5. Electricity 255 239 16
Total GHG emissions 1266 1221 45

Totalreduction of GHG emissions in nectarine production: 45 kgCO,,  ha™!

Potassium Herbicides

; Phosphat: 3
Nitrogen ( (1)0g1301;1}e (1.33%) (1.11%)  Ipsecticides
(8.89%) o (5.33%)
e Fungicides
Diesel fuel : (#00%)
(33.3%)
e Electricity
l\»mhil;e? (35.6%)
10

Figure 2. The share of each input for GHG emission reduction of nectarine production

4. Conclusions
Like most stone fruits, nectarines thrive in a Mediterranean climate of long, hot summers and cool, wet
winters. Good climatic condition in Sari region induced to improve nectarine production in recent years.
In this research, an energy analysis for nectarine production in Sari region of Iran was conducted to
discriminate efficient nectarine orchards from inefficient and GHG emissions reduction using DEA
approach. Based on study results, following conclusions were drawn:

1.

2.

3.

From the total of 45 nectarine orchards considered for the analysis, 24% and 27% were found to be
technically and pure technically efficient, respectively.
The average values of technical, pure technical and scale efficiency scores of orchards were found to
be 0.85, 0.99 and 0.87, respectively.
The energy saving target ratio for nectarine production was calculated as 1309 MJ ha™, indicating that
by following the recommendations resulted from this study, about 3.25% of total input energy could
be saved while holding the constant level of yield. Also the electricity energy has highest potential for
improvement by 6.49%. Also from total saved energy electricity had highest share by 24.8%.
By optimization of energy consumption, the energy ratio, energy productivity, specific energy and net
energy can improved with 3.68%, 2.78%, -3.57% and 9.03%, respectively.
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5. The GHG emission of present and optimum units was found to be as 1266 and 1221 kgCOZGQ_ha'l,
respectively. The potential of GHG reduction was calculated about 45 kgCOx, ha™. Also, the highest
share of potential of GHG reduction was belonged to electricity in nectarine production. According to
the recommendations of this study, optimization of energy inputs can reduce GHG emission in
agricultural systems, significantly.
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