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Abstract 
The transient thermal behavior of a homogeneous composite micro-domain described by the hyperbolic 
heat-conduction model with neglecting conduction in the fluid domain is investigated semi-analytically. 
The composite micro-domain consists of a matrix (fluid domain) and inserts (solid domain), each made 
of different material. The effect of different parameters that affect the local thermal equilibrium 
assumption under the effect of the hyperbolic heat conduction model is investigated. 
Copyright © 2014 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
over the past two to three decades, the study of heat transfer in porous media has evolved as result of it is 
importance in the study of many engineering applications. Nield and Bejan [1] highlighted the new 
conceptual development and applications of convection in porous media. One of the main issues in the 
study of porous media is the assumption of local thermal equilibrium (LTE) were it is assumed that both 
the fluid and solid are in LTE, therefore only one energy equation is considered [1], limiting the results 
to certain special cases and applications. On other hand [2-7] several studies adopted the two-phase 
model where there are two energy equations for the solid and fluid domain. It is clear that there is a need 
to establish the conditions when the LTE can be used in the study of convection in porous media.  
Numerous studies [8-12] investigated the validity of LTE assumption in porous media for different flow 
conditions and geometries. They established a group of dimensionless parameters that control the LTE 
assumption for different flow conditions in porous media, and derived the criteria necessary for LTE 
assumption. All the previous studies were described by the parabolic heat conduction models. 
Recently Nnanna et al.[13] performed experimental study of non-Fourier thermal response in porous 
media, in this study a two equation model that uses non-Fourier (dual phase lag) to study the response of 
a porous medium subjected to a short time thermal disturbance is verified experimentally. Also, they 
showed that during a rapid transient even when the fluid and solid have the same temperature the Fourier 
conduction model failed to describe temperature filed.  
Rapid transient is encountered in many applications that involves porous medium, such as laser synthesis 
and processing of thin-film deposition where in this application a heat source such as a laser and/or 
microwave of extremely short duration or very high frequency is used. In the present study the thermal 
equilibrium assumption in transient natural convection flow in porous channel as described by a 
hyperbolic heat-conduction model is investigated. 
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2. Analysis 
Consider the problem of unsteady natural convection fluid flow into a parallel plate channel totally filled 
with porous media. The unsteadiness in the channel thermal behavior is due to a sudden change in the 
temperature of the channel wall. Referring to Figure 1,  
 

 
 

Figure 1. Schematic representation of the domain under consideration 
 
The energy equations with the initial and boundary conditions for both the fluid and solid domains for 
the hyperbolic heat conduction model are given as:  
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The initial and boundary conditions become: 
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Equations (1-3) are solved using Laplace transformation technique. Now with the notation that 

( ){ } ( )YSWYL ss ,, =ηθ  and ( ){ } ( )YSWYL ff ,, =ηθ , Laplace transformation of Eqs.(1-3) yields: 
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Also, the Laplace transformation of the boundary conditions is given as: 
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According to the boundary conditions given in Eq. (6), Eqs. (4-5) are solved to give: 
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Equations (7-8) are inverted using a computer program based on Riemann-sum approximation [14] as: 
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where Re refers to the “real part of” and 1−=i  is the imaginary number, N is the number of terms 
used in Riemann-sum approximation and γ  is the real part of the Bromwich contour that is used in 
inverting Laplace transforms. The Riemann-sum approximation for the Laplace inversion involves a 
single summation for numerical process. Its accuracy depends on the value ofγ and the truncation error 
dictated by N. 
 
3. Results and discussion 
The effect of different parameters on the validity of the thermal equilibrium assumption in transient 
natural convection flow in porous channel as described by a hyperbolic heat-conduction model is 
investigated in Figures 2-6 for the case (neglecting conduction in the fluid domain) 
Figure 2 shows the transient behavior of the fluid and solid temperatures at different RK  with neglecting 
the conduction in the fluid domain. As shown, the difference between the fluid and solid temperatures 
increases as RK  decreases, which implies that as RK  increases the thermal resistance of the solid 
domain decreases or the thermal resistance of the fluid increases. The effect of total thermal capacity 
ratio RC  on the transient behavior of the fluid and solid temperatures is shown in Figure 3. It is clear 
that the difference between the fluid and solid temperatures increases as the value of RC  decreases. The 
transverse conduction in the fluid domain is neglected which implies that the effect of the thermal 
disturbance is carried into the channel directly through the solid domain and then the solid domain 
transfer it to the fluid domain through the volumetric convective heat transfer coefficient.  
 Figure 4 shows the effect of Biot number on the transient fluid and solid temperatures with neglecting 
conduction in the fluid domain. It is obvious from these figures that the difference decreases as Biot 
number increases. This implies that the effect of Bi number on the temperature difference is insignificant 
at large values of Bi. This is justified, since the time required for both fluid and solid domain to attain the 
same temperature is inversely proportional to q, where q is the convective heat transfer between the fluid 
and solid domain. The transient behavior of the difference between the fluid and solid temperatures at 
different fτ and sτ is shown in Figure 5 with neglecting conduction in the fluid domain. It is clear from 

this figure that the difference increases as fτ and sτ  decrease. Effect of Knudsen number Kn on the 

transient fluid and solid temperatures is shown in Figure 6. 
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Figure 2. Transient behavior of the fluid and solid temperature at different RK  
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Figure 3. Transient behavior of the fluid and solid temperature at different RC  
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Figure 4. Transient behavior of the fluid and solid temperature at different iB  
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Figure 5. Transient behavior of the fluid and solid temperature at differentτ  
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Figure 6. Transient behavior of the fluid and solid temperature at different Kn 
 
 
4. Conclusions 
Thermal equilibrium assumption in transient natural convection flow in porous channel as described by a 
hyperbolic heat-conduction model is investigated with neglecting the conduction in the fluid domain. It is 
found that the volumetric Biot number, thermal conductivity ratio, phase lag in heat flux, Knudsen 
number and total thermal capacity ratio have the most significant effect on the local thermal equilibrium 
assumption. The local thermal equilibrium assumption is secured for large values of Biot number, 
Knudsen number and thermal conductivity ratio and small values of total thermal capacity ratio, phase 
lag in heat flux. 
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