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Abstract 
The optimal performance of an irreversible quantum Carnot refrigerator with working medium consisting 
of many non-interacting harmonic oscillators is investigated in this paper. The quantum refrigerator cycle 
is composed of two isothermal processes and two irreversible adiabatic processes, and the 
irreversibilities of heat resistance, internal friction and bypass heat leakage are considered. By using the 
quantum master equation, semi-group approach and finite time thermodynamics (FTT), this paper 
derives the cooling load and coefficient of performance (COP) of the quantum refrigeration cycle and 
provides detailed numerical examples. At high temperature limit, the cooling load versus COP 
characteristic curves are plotted, and effects of internal friction and bypass heat leakage on the optimal 
performance of the quantum refrigerator are discussed. Three special cases, i.e., endoreversible, 
frictionless and without bypass heat leakage, are discussed in brief. 
Copyright © 2015 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
With rapid development in fields of aerospace, superconductivity application and infra-red techniques 
etc., demands of cryogenic technology increase greatly. By using the finite time thermodynamics [1-12] 
and considering quantum characteristic of the working medium, many researchers have investigated the 
performance of quantum cycles and obtained many meaningful results. Geva and Kosloff [13] introduced 
the dynamical semi-group approach of quantum mechanics and non-equilibrium statistical theory into the 
FTT, established an endoreversible quantum heat engine model with working medium consisting of 
many non-interacting spin-1/2 systems, and obtained the optimal performance of the quantum heat 
engine. Geva and Kosloff [14] established another endoreversible quantun Carnot heat engine model 
using many non-interacting harmonic oscillators as working meidum, and indicated that the optimal 
cycles of spin-1/2 and harmonic heat engines are not Carnot cycle. Then, Wu et al [15] established an 
endoreversible quantum harmonic Stirling heat engine model and investageted its optimal performance. 
Feldmann et al [16] investigated the optimal performance of an endoreversible quantum spin-1/2 Baryton 
heat engine. Wu et al [17] first established a quantum spin-1/2 Carnot refrigerator model and obtained 
the otpimal performance parameters and the optimal relation between the cooling load and COP of the 
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quantum refrigerator. Wu et al [18] established a quantum harnonic Carnot refrigerator model and 
obtained the optimal relation between the cooling load and COP of the quantum refrigerator. Besides 
quantum Carnot refrigeration cycles, Wu et al [19] and Lin et al [20] established endoreversible quantum 
harmonic Stirling [19] and Brayton [20] refrigerator models and obtained the optimal performance of 
these quantum refrigerators. He et al [21] investigated the optimal performance of an endoreversible 
quantum harmonic Brayotn refrigerator. 
In the work mentioned above, the quantum cycles are endoreversible and the irreversibility of heat 
resistance is the sole irreversibility considered in the cycles. However, real heat devices are usually 
devices with internal and external irreversibilities. There are various sources of irreversibility, such as 
heat resistance, bypass heat leakage, dissipation processes inside the working medium, etc. Jin et al [22] 
introduced bypass heat leakage into exergoeconomic performance optimization of a quantum harmonic 
Carnot engine, and the bypass heat leakage arose from the thermal coupling between the hot and cold 
heat reservoirs. Feldmann and Kosloff [23] introduced internal friction in the performance investigation 
for a quantum spin-1/2 Brayton heat engine and refrigerator. Since then, some authors explored the 
origin of internal friction and investigated the effects of quantum friction on performance of quantum 
thermodynamic cycles [24-29]. Rezek and Kosloff [30] investigated the optimal performance of an 
irreversible harmonic Otto heat engine with internal friction and indicated that the irreversible loss in the 
quantum cycles was owed to finite rate of heat transfer and internal friction. The internal friction could 
be traced to the non-commutability of kinetic and potential energy of the working medium. He et al [31] 
established an irreversible quantum harmonic Otto refrigerator model and investigated the effects of 
internal friction on the optimal performance. By considering the irreversibilities of heat resistance and 
inherent regenerative loss, He et al [32] and Lin et al [33] investigated the optimal performance of 
irreversible spin-1/2 Ericsson refrigerator [32] and irreversible harmonic Striling refrigerator [33], 
respectively, and analyzed the effects of inherent regenerative loss on the optimal performance. Wu et al 
[34] established a general irreversible quantum harmonic Brayton refrigerator model, and obtained the 
optimal relationship between the dimensionless cooling load and the COP and the optimization region 
(or criteria). The effects of bypass heat leakage, irreversibility in two adiabatic processes and the 
quantum characteristic of the working fluid were discussed. Different from the internal friction 
introduced in Refs. [23, 29], an internal irreversible factor φ  was used to describe the irreversibility 
inside the irreversible adiabatic processes in the quantum refrigeration cycle. Wu et al [35] established a 
general irreversible quantum spin-1/2 Ericsson refrigerator model with losses of heat resistance, bypass 
heat leakage and internal irreversibility, and derived the optimal relationship between the cooling load 
and COP for the irreversible quantum refrigerator. In particular, the performance characteristics of the 
cooler at the low temperature limit are discussed. By considering losses of heat resistance, internal 
friction and bypass heat leakage, Liu et al [36, 37] established models of general irreversible quantum 
Carnot heat engines with harmonic oscillators [36] and spin-1/2 systems [37], and investigated the 
optimal ecological performances of these quantum heat engines. The irreversibility in the adiabatic 
process was described by internal friction coefficient which was different from the internal irreversible 
factors used in Refs. [34, 35]. 
Based on Refs. [22, 23, 34, 35], the aim of this paper is to analyze and optimize the performance of an 
irreversible quantum Carnot refrigerator with irreversibilities of heat resistance, internal friction and 
bypass heat leakage. The working medium of the quantum refrigerator is consisting of many non-
interacting harmonic oscillators. The quantum refrigeration cycle is composed of two isothermal 
processes and two irreversible adiabatic processes. By using the quantum master equation, semi-group 
approach and FTT, this paper will derive the cooling load and COP and provide detailed numerical 
examples. At high temperature limit, the cooling load versus COP characteristic curves will be plotted. 
The effects of internal friction and bypass heat leakage on the optimal performance will be discussed. 
Three special cases, that is, endoreversible case, frictionless case and the case without bypass heat 
leakage, will be are discussed in brief. 
 
2. Quantum dynamics of a harmonic oscillator system 
Consider a quantum system consisting of many non-interacting harmonic oscillators, according to 
quantum mechanics theory, the Hamiltonian SĤ  of this quantum system is given by [38, 39] 
 

S
ˆ ˆ ˆ ˆ( ) ( )H t N t a aω ω += =  (1) 
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where â+  and â  are the Bosonic creation and annihilation operators,  is the reduced Planck’s constant, 
ˆ ˆ ˆN a a+=  is the number operator, and ( )tω  is the frequency of the oscillator. Based on the quantum 

statistical theory, the population n  of the oscillator at thermal equilibrium can be obtained from the 
Bose-Einstein distribution [38, 40] 
 

B/( )1 ( 1) 1 ( 1)k Tn e eω ωβ= − = −  (2) 
 
where B1 ( )k Tβ = , Bk  is the Boltzmann constant and T  is the absolute temperature. For convenience, 
the “temperature” will refer to β  rather than T  throughout this paper. 
The internal energy of the harmonic oscillator system is given by 
 

S S
ˆ ˆ( ) ( )E H t N t nω ω= = =  (3) 

 
If there exists thermal coupling between the harmonic oscillator system and a heat reservoir (bath), the 
harmonic oscillator system becomes an open system. The total Hamiltonian of the system-bath is given 
by [41, 42] 
 

S SB B
ˆ ˆ ˆ ˆH H H H= + +  (4) 

 
where SĤ , SBĤ  and BĤ  are Hamiltonians of the harmonic oscillator system, the system-bath interaction 
and the bath, respectively. The system-bath Hamiltonian is further assumed to be represented in the form of 
 

SB
ˆˆ ˆˆH Q Bα α α

α

= Γ∑  (5) 

 
where Q̂α , B̂α  and ˆ

αΓ  are operators of the harmonic oscillator system, the bath and the interaction 
strength. For an system operator X̂ , the effects of SBĤ  and BĤ  on the Hamiltonian are included in the 
Heisenberg equation as additional relaxation-type terms. In the Heisenberg picture, the motion of an 
operator is the master equation 
 

S D

ˆ ˆd ˆ ˆ ˆ( )
d
X i XH X L X
t t

∂⎡ ⎤= + +⎣ ⎦ ∂
，  (6) 

 
where D

ˆ( )L X  is the dissipation term (the relaxation term) which arises from the thermal coupling 
between the harmonic oscillator system and heat reservoir. 
Substituting S

ˆ ˆ ˆX H Nω= =  into the master equation (6) yields the rate of change of energy 
 

S
S D

d d dˆ ˆ ˆ( )
d d d
E

H N L N n n
t t t

ω ω ω ω= = + = +  (7) 

 
In the right-hand side of equation (7), the first term 
 

d
d
Wn
t

ω =  (8) 

 
Represents the energy level structure change and corresponds to instantaneous power, and the second term 
 

d
d
Qn Q
t

ω = =  (9) 

 
Represents the harmonic oscillator transitions between energy levels and corresponds to the 
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instantaneous heat flow between the harmonic system and surrounding. The work and heat inexact 
differentials may be identified by 
 
d dW n ω=  (10) 
 
d dQ nω=  (11) 
 
For a harmonic oscillator system, equation (7) gives the time derivative of the first law of 
thermodynamics. 
 
3. An irreversible harmonic oscillator Carnot refrigerator model 
The irreversible harmonic oscillator Carnot refrigerator considered herein has the following constraints: 
1. The working medium of the quantum refrigerator is modeled as a gas consisting of many non-
interacting harmonic oscillators. 
2. The quantum refrigerator operates between a hot reservoir hB  and a cold reservoir cB . The two 
reservoirs are thermal phonon systems and at constant “temperatures” h B h1 ( )k Tβ =  and c B c1 ( )k Tβ = , 
respectively. The two heat reservoirs are infinitely large and their internal relaxations are very strong. 
Therefore, the two heat reservoirs are assumed to be in thermal equilibrium. 
3. The n ω−  diagram of an irreversible quantum Carnot refrigeration cycle is shown in Figure 1. The 
quantum refrigeration cycle is composed of two isothermal branches and two irreversible adiabatic 
branches. 

 

 
 

Figure 1. The n ω−  diagram of an irreversible quantum harmonic Carnot refrigeration cycle 
 

In the two isothermal processes, the working medium couples thermally to the heat reservoirs and 
exchanges heat with the heat reservoirs. The “temperatures” of the working medium in processes 4 1→  
and 2 3→  are h B h1 ( )k Tβ ′ ′=  and c B c1 ( )k Tβ ′ ′= , respectively. The second law of thermodynamics requires 

c c h hβ β β β′ ′> > > . 
In the two adiabatic processes 1 2→  and 3 4→ , there is no thermal coupling between the working 
medium and the hot reservoirs so that there is no heat exchange. Assume that the required time of the 
processes 3 4→  and 1 2→  are aτ  and bτ , respectively, and the frequency of the oscillator changes 
linearly with time 
 

( ) (0)t tω ω ω= +  (12) 
 
According to quantum adiabatic theorem [39], rapid change of frequency causes quantum non-adiabatic 
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phenomenon, and the harmonic population n  becomes variable in the adiabatic process. The effect of 
non-adiabatic phenomenon on the performance of the quantum refrigerator is similar to that of internally 
dissipative friction in the classical analysis. It is therefore assumed that the non-adiabatic phenomenon 
can be described by an internal friction. One assumes that the internal friction forces a constant speed 
population change rate [23, 43] 
 

2( )
t

n µ
=

′
 (13) 

 
where µ  is friction coefficient and t′  is the time spent on the corresponding adiabatic process. The 
population of harmonic oscillators in the adiabatic process may be expressed as 
 

2(t) (0) ( )n n t
t
µ

= +
′

 (14) 

 
substituting at τ=  and bt τ=  into equation (14) yields 
 

2

2 1
b

n n µ
τ

= + ,--
2

4 3
a

n n µ
τ

= +  (15) 

 
where h 1

1 1 ( 1)n e β ω′= − , c 2
2 1 ( 1)n e β ω′= − , c 3

3 1 ( 1)n e β ω′= − and h 4
4 1 ( 1)n e β ω′= −  are the populations of 

harmonic oscillators at thermal equilibrium states 1 , 2 , 3  and 4 , respectively. Using equation (15) 
yields 
 

h 1 h 1

h 1

2
b

2 2
c b

e (e 1)1 ln
(e 1)

β ω β ω

β ω

τ µ
ω

β τ µ

′ ′

′

+ −
=

′ + −
 (16) 

 
c 3 c 3

c 3

2
a

4 2
h a

e (e 1)1 ln
(e 1)

β ω β ω

β ω

τ µ
ω

β τ µ

′ ′

′

+ −
=

′ + −
 (17) 

 
The works done on the system along processes 1 2→  and 3 4→  can be calculated from equations (7), 
(12) and (14), respectively 
 

b
22

1 2
12 2 1 10

b b

( )
( )( )

2 2
W nd n

τ µ ω ωµω ω ω
τ τ

+
= = − + +∫  (18) 

 
a

22
4 3

34 4 3 30
a a

( )
( )( )

2 2
W nd n

τ µ ω ωµω ω ω
τ τ

+
= = − + +∫  (19) 

 
From equation (9), one can get that the second part of the right sides of equations (18) and (19) 

2
1 2

b

( )
2

µ ω ω
τ
+  and 

2
4 3

a

( )
2

µ ω ω
τ
+  are the heats generated on processes 1 2→  and 3 4→ , respectively, and 

these parts of work are against the friction. 
4. Besides heat resistance and internal friction, there exists bypass heat leakage between the hot and cold 
reservoirs. The bypass heat leakage arises from the thermal coupling action between the hot reservoir and 
cold reservoir by the working medium of the quantum refrigerator 
5. The effect of Bose-Einstein condensation of the working medium (non-interacting harmonic oscillator 
system) is not considered in this paper, viz. c eβ β′ < , where e B e1 ( )k Tβ =  and eT  is the critical temperature 
of Bose-Einstein condensation. The effect of relativity theory is not considered, too. 
The model established in this paper is similar to the models of generalized irreversible Carnot 
refrigerator with classical working medium with several irreversibilities, such as heat resistance, internal 
irreversibility and bypass heat leakage [44-49]. 
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4. Cycle period 
According to quantum semi-group approach, the dissipation term in equation (7) becomes [14, 41, 42] 
 

D
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )L X Q X Q Q X Qα α α α α

α

γ + +⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑ , ,  (20) 

 
where Q̂α  and Q̂α

+  are operators in the Hilbert space of the harmonic oscillator system and Hermitian 
conjugate, and αγ  is phenomenological positive coefficient. 
Substituting ˆ ˆQ aα = , ˆ ˆQ aα

+ +=  into equation (7) yields 
 

ˆ ˆd ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( , , ) ( , , )
d
X Xi a a X a X a a X a a X a a X a
t t

ω γ γ+ + + + +
+ −

∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂
 (21) 

 
Substituting ˆ ˆ ˆ ˆX N a a+= =  into equation (21) and using ˆ ˆ, 1a a+⎡ ⎤ =⎣ ⎦ , ˆ ˆ ˆ,N a a+ +⎡ ⎤ =⎣ ⎦  and ˆ ˆ ˆ,N a a⎡ ⎤ = −⎣ ⎦  yields 

the time evolution of harmonic oscillator population 
 

ˆd
2( ) 2

d

N
n n

t
γ γ γ− + += = − − +  (22) 

 
Solving equation (22) yields 
 

2( )
e 0 e( ) e tn n n n γ γ− +− −= + −  (23) 

 
where 0n  is the initial value of n  and e ( )n γ γ γ+ − += −  is the asymptotic value of n . This asymptotic 
population of oscillators must correspond to the value at thermal equilibrium state e 1 (e 1)jn β ω= − , where 

h, cj =  correspond to isothermal processes 4 1→  and 2 3→ , respectively. Comparison of the two 
expressions of en  yields 
 

qae jβ ωγ + = ,-- (1 q)ae jβ ωγ +
− =  (24) 

 
where both a  and q  are two constants. , 0γ γ+ − >  requires a 0> . If jβ ω →∞ , 0γ + →  and γ − → ∞  hold, 
it requires 0 q 1> > − . 
Substituting equations (24) into equation (22) yields 
 

j jq
ˆd N

2ae [(e 1) 1]
d

n n
t

β ω β ω= = − − −  (25) 

 
The times of isothermal processes 4 1→  and 2 3→  are, respectively 
 

1 1 1

h h h h h h4 4 4

ln[( 1) ] h
h qln[( 1) ]

dd d 1d
2a e (e e )(1 e )

n n

m m m mn n

mn
n

ω

α αω

ωτ ω
+

−+
= =

− −∫ ∫  (26) 

 
3 2 2

c c c c c c2 3 3

ln[( 1) ] c
c qln[( 1) ]

dd d 1d
2a e (e e )(1 e )

n n

m m m mn n

mn
n

ω

α αω

ωτ ω
+

−+
= =

− −∫ ∫  (27) 

 
where h hm β ω′= , c cm β ω′= , h h h >1α β β ′=  and c c c 1α β β ′= < . 
The cycle period is given by 
 

1 1 2 2

h h h h h h c c c c c c4 4 3 3

a b h c

ln[( 1) ] ln[( 1) ] ch
a bq qln[( 1) ] ln[( 1) ]

dd1 1
2a 2ae (e e )(1 e ) e (e e )(1 e )

n n n n

m m m m m m m mn n n n

mm
α α α α

τ τ τ τ τ

τ τ
+ +

− −+ +

= + + +

= + + +
− − − −∫ ∫

 (28) 
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5. Cooling load and COP 
Using equation (9), one can get the amounts of heat exchange between the working medium and the hot 
reservoir in isothermal processes 4 1→  and 2 3→ , respectively 
 

1

4

1 4 4
h 1 4

h 1 4 1

11 ( ln ln ln )
1 1 1

n

n

n n n
Q dn n n

n n n
ω

β
+′ = − = − +

′ + + +∫  (29) 

 
3

2

3 32
c 3 2

c 3 2 2

1 111 ( ln ln ln )
1

n

n

n nn
Q dn n n

n n n
ω

β
+ ++′ = = − +

′ +∫  (30) 

 
The working medium system releases heat in the process 4 1→  so that there is a minus before the 
integral. From equation (8), one can get the works done on the system along these processes, respectively 
 

1

4

4
41 4 1

h 1

1 ln ( )
n

W nd
n

ω

ω
ω ω ω

β
= = + −

′∫  (31) 

 
3

2

2
23 2 3

c 3

1 ln ( )
n

W nd
n

ω

ω
ω ω ω

β
= = + −

′∫  (32) 

 
Similar to the calculation of the heat flow between the working medium and heat reservoirs, one can 
calculate the bypass heat leakage. Similar to n , derivative of the population of cold reservoir cn  can be 
derived as follows at the condition of small thermal disturbance 
 

h c h c
c c2ce [(e 1) 1]n nλ β ω β ω= − − −  (33) 

 
where cω  is the frequency of the thermal phonons of the cold reservoir, c  and λ  are two constants. 
Using equations (9) and (33) yields the heat flow from hot reservoir to coal reservoir (i.e. rate of bypass 
heat leakage) [22] 
 

h c h c
e e c c e c c2 c e [1 (e 1) ]Q C n C nλ β ω β ωω ω= = − −  (34) 

 
where eC  is a dimensionless factor which describes the magnitude of the bypass heat leakage. According 
to the refrigerator model, the hot and cold reservoirs are assumed to be in thermal equilibrium and cω  
may be assumed to be a constant. The bypass heat leakage quantity per cycle is given by 
 

h c h c
e e e c c2 c e [1 (e 1) ]Q Q C nλ β ω β ωτ ω τ= = − −  (35) 

 
Combining equations (28) and (30) with equation (35) yields the cooling load 
 

h c h c

c

13 32
3 2 e c c

c 3 2 2

1 111 ( ln ln ln ) 2 c e [1 (e 1) ]
1

R Q
n nnn n C n

n n n
λ β ω β ω

τ

τ ω
β

−

=
+ ++

= − + − − −
′ +

 (36) 

 
where c c eQ Q Q′= −  is the total heat released by the cold reservoir. Combining equations (29) and (30) 
with equation (35) yields the COP 
 

h c h c

c h

3 32
3 2 e c c

c 3 2 2

3 31 4 4 2
1 4 3 2

h 1 4 1 c 3 2 2

1 111 ( ln ln ln ) 2 c e [1 (e 1) ]
1

1 11 11 1( ln ln ln ) ( ln ln ln )
1 1 1 1

Q Q
n nnn n C n

n n n
n nn n n nn n n n

n n n n n n

λ β ω β ω

ε

ω τ
β

β β

=
+ ++

− + − − −
′ +

=
+ ++ +

− + − − +
′ ′+ + + +

 (37) 
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where h h eQ Q Q′= −  is the total heat absorbed by hot reservoir. 
From equations (36) and (37), one can see that both the cooling load R  and COP ε  are functions of hβ ′  
and cβ ′  for given hβ , cβ , 0β , q , a , c , λ , 1ω , 3ω , hω , eC  and µ . The integral in the denominators of 
equations (36) and (37) is unable to evaluate in closed form for the general case, therefore, one can not 
obtain the fundamental relation between the cooling load and COP analytically. Using numerical 
calculations, one can plot three-dimensional diagrams of dimensionless cooling load (

emax, 0, 0CR R µ= = , hβ ′ , 

cβ ′ ) and COP ( ε , hβ ′ , cβ ′ ) as shown in Figures 2 and 3, where 
emax, 0, 0CR µ= =  is the maximum cooling load 

for endoreversible case. The parameters used in the numerical calculations are a c 2= = , q 0.5λ= = − , 

h B1 (2 )kβ = , c B1 kβ = , a b 0.01τ τ= = , 10
1 5 10ω = × , 9

3 8 10ω = × , 10
c 1 10ω = × , 0.01µ = , and e 0.01C = . 

Figure 2 shows that there exist optimal “temperatures” hβ ′  and cβ ′  which lead to a maximum 
dimensionless cooling load for given “temperatures” of hot and cold reservoirs and other parameters. 
Affected by the internal friction and bypass heat leakage, the maximum dimensionless cooling load 

emax, 0, 0 max( ) 1CR R µ= = < . Figure 3 shows that there also exist optimal “temperatures” hβ ′  and cβ ′  which lead 
to a maximum COP with nonzero corresponding dimensionless cooling load when there exists a bypass 
heat leakage, and the optimal “temperature” hβ ′ (or cβ ′ ) is close to the heat reservoir “temperature” hβ (or 

cβ ). 
 

 
 

Figure 2. The dimensionless cooling load 
emax, 0, 0CR R µ= =  versus “temperatures” ( hβ ′ , cβ ′ ) 

 

 
 

Figure 3. The COP ε  versus “temperatures” ( hβ ′ , cβ ′ ) 
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6. Optimal fundamental characteristic at high temperature limit 
When the temperatures of the heat reservoirs and working medium are high enough, i.e. 1βω , the 
results of the quantum refrigerator obtained above can be reduced. At the first order approximation 

1ze z= + , equations (29), (30) and (34) can be reduced to 
 

2
3 a 3 1

h
ln( ) ln( )x xy

Q
xy

µ ω τ ω ω+ −′ =  (38) 

 
2

3 1 1 b
c

ln( ) ln(1 )x y
Q

y
ω ω µ ω τ− − +′ =  (39) 

 
e e c h c c c h e c h[2c (1 ) ]( ) ( )Q C Cω λ β ω β β β α β β≈ + − = −  (40) 

 
where c h h cx T T β β′ ′ ′ ′= = , cy β ′=  and c h c c2c (1 )α ω λ β ω β= + . 
At the second order approximation 21 1 (2 )ze z z= + + , the cycle period (28) can be reduced to 
 

2 2 2 2 2
3 a b a b c 3 b a a b

2 2
c a b h 3 a b a b

a b c 3 1 h h c 3 a b h a b 3 1

3 a b h c

( )( 2a ) [ 2a ( )]

[ 2a ( )]
[ ( ) 2a ( )] ( )

2a ( )( )

x y x y

x xy
x

x xy y

ω τ τ µ τ τ β ω τ µ τ τ τ

β τ τ β ω τ µ τ τ τ
τ τ β ω ω β β β ω τ τ β τ τ ω ω

τ
ω τ τ β β

+ − − − +

− − − +

+ + − + −
=

− −
 (41) 

 
Using equations (38)-(41), the cooling load and COP can be reduced to 
 

2
3 a b h c 1 3 1 b

e c2 3 2 2 2 2
3 a b a b c 3 b a a b

2 2 2
c a b h 3 a b a b

a b c 3 1 h h c 3 a b h a b 3 1

2a ( )( )[ln( ) ln(1 )]
(

( )( 2a ) [ 2a ( )]

[ 2a ( )]
[ ( ) 2a ( )] ( )

x xy y x y
R C

x y x y

x y xy
xy y

ω τ τ β β ω ω µ ω τ
α β

ω τ τ µ τ τ β ω τ µ τ τ τ

β τ τ β ω τ µ τ τ τ
τ τ β ω ω β β β ω τ τ β τ τ ω ω

− − − +
= − −

+ − − − +

− − − +

+ + − + −

h )β  (42) 

 

2
3 1 1 b e c h

2 2
1 b 3 a 3 1

ln( ) ln(1 ) ( )
ln(1 ) ln( ) ( 1) ln( )

x x x y xyC
x x y x xy x

ω ω µ ω τ α β β τ
ε

µ ω τ µ ω τ ω ω
− − + − −

=
+ + + + −

 (43) 

 
At high temperature limit, one can find that it is also hard to optimize cooling load R  and COP ε  and 
can not obtain the fundamental optimal relation between the cooling load R  and COP ε  analytically 
from equations (42) and (43). Therefore, one has to use numerical calculation method in the following 
analysis and optimization. From equations (42) and (43), one can plot three-dimensional diagrams of 
dimensionless cooling load (

emax, 0, 0CR R µ= = , hβ ′ , cβ ′ ) and COP ( ε , hβ ′ , cβ ′ ) as shown in Figures 4 and 5, 
where 

emax, 0, 0CR µ= =  is the maximum cooling load for the endoreversible case at high temperature limit. The 
parameters used in numerical calculations are a 2= , c 2= , h B1 (300 )kβ = , c B1 (260 )kβ = , a 0.01τ = , 

b 0.01τ = , 0.5λ = − , 12
1 1.2 10ω = × , 11

3 1 10ω = × , 10
c 9 10ω = × , 0.05µ = , and e 0.03C = . From Figure 4, one 

can see that there also exists a maximum dimensionless cooling load 
emax, 0, 0 max( )CR R µ= =  for the harmonic 

quantum Carnot refrigerator. Affected by the internal friction and bypass heat leakage, the maximum 
dimensionless cooling load 

emax, 0, 0 max( ) 1CR R µ= = < . From Figures 3 and 5, one can see that the shape of the 
three-dimensional diagram of COP ( ε , hβ ′ , cβ ′ ) at high temperature limit is similar to that in general 
case, and there also exists a maximum COP maxε  with nonzero corresponding dimensionless cooling load 
for the harmonic quantum Carnot refrigerator. The optimal “temperature” hβ ′ (or cβ ′ ) corresponding to 
the maximum COP maxε  is close to the “temperature” of heat reservoirs hβ (or cβ ) at high temperature 
limit. 
 



International Journal of Energy and Environment (IJEE), Volume 6, Issue 6, 2015, pp.537-552 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2015 International Energy & Environment Foundation. All rights reserved. 

546 

 
 

Figure 4. The dimensionless cooling load 
emax, 0, 0CR R µ= =  versus “temperatures” ( hβ ′ , cβ ′ ) at high 

temperature limit 
 

 
 

Figure 5. The COP ε  versus “temperatures” ( hβ ′ , cβ ′ ) at high temperature limit 
 
To maximize the cooling load R  for fixed COP ε  or maximize the COP ε  for fixed cooling load R , 
one can introduce the Lagrangian functions 1 1L R λ ε= +  or 2 2L Rε λ= + , where 1λ  and 2λ  are two 
Lagrangian multipliers. Theoretically, solving the Euler-Lagrange equations  
 

1 0xL∂ ∂ = ,-- 1 0yL∂ ∂ =  (44) 
 
Or 
 

2 0xL∂ ∂ = ,-- 2 0yL∂ ∂ =  (45) 
 
gives the optimal “temperatures” hβ ′  and cβ ′ . Combining equations (42) and (43) with the Euler-
Lagrange equations above, one can not solve these equations analytically. Solving Euler-Lagrange 
equations numerically, one can plot the optimal characteristic curves of the dimensionless cooling load 
versus COP 

emax, 0, 0CR R µ ε= = − , as shown in Figures 6 and 7. Except µ  and eC , the values of the 
parameters used in the numerical calculations are the same as those used in the numerical calculations of 
Figure 4. Figures 6 and 7 show that the 

emax, 0, 0CR R µ ε= = −  curves are parabolic-like ones and the 
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dimensionless cooling load has a maximum when there is no bypass heat leakage ( e 0C = ). When there 
exists bypass heat leakage ( e 0C ≠ ), the 

emax, 0, 0CR R µ ε= = −  curves are loop-shaped ones, and both the 
cooling load and COP have maximums. For a fixed bypass heat leakage, both the available cooling load 
and COP decrease with the increase in the internal friction µ . There are two different COPs for a given 
cooling load and the quantum refrigerator should work at the point that the COP is higher.  
 

 
 

Figure 6. Effects of internal friction µ  and bypass heat leakage eC  on dimensionless cooling load 

emax, 0, 0CR R µ= =  versus COP ε  
 

 
 

Figure 7. Effects of internal friction µ  and bypass heat leakage eC  on dimensionless cooling load 

emax, 0, 0CR R µ= =  versus COP ε  
 

7. Three special cases 
The results of this paper include the optimal cooling load and COP characteristics in three special cases, 
that is, endoreversible case, frictionless case and the case without bypass heat leakage. 
(1) The endoreversible case. In this case there is the sole irreversibility of heat resistance in the cycle. 
Compared to the time spent on the two isothermal processes, the time spent on the two adiabatic 
processes is negligible (i.e. a b 0τ τ= = ), and equations (28), (36) and (37) become 
 

h 4 c 2

h h h h h h c c c c c ch 1 c 3

ch
q q

dd1 1
2a 2ae (e e )(1 e ) e (e e )(1 e )m m m m m m m m

mmβ ω β ω

α α α αβ ω β ω
τ

′ ′

− −′ ′
= +

− − − −∫ ∫  (46) 
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1
3 3 3 3 1 1 1 1

c

1 [(1 ) ln(1 ) ln (1 ) ln(1 ) ln ]R n n n n n n n n τ
β

−= + + − − + + +
′

 (47) 

 

1
x

x
ε =

−
 (48) 

 
At high temperature limit, equations (46) and (47) can be simplified to 
 

2
c c 3 1 h h 3 1

3 h c

( ) ( )
2a ( )( )

x x x
x xy y

β β ω ω β β ω ω
τ

ω β β
− + + −

=
− −

 (49) 

 
3 h c 1 3

2
c c 3 1 h h 3 1

2a ( )( ) ln( )
( ) ( )

x xy y x
R

x y xy xy y
ω β β ω ω

β β ω ω β β ω ω
− −

=
− + + −

 (50) 

 
Using equations (48) and (50), one can derive the fundamental optimal relation between cooling load and 
COP analytically in endoreversible case 
 

2
3 h c 1 3

h c 3 1

2a ( (1 ) ) ln{ [(1 ) ]}
[ (1 ) ][ (1 ) ]

R
ω ε β ε β ε ωε ε ω

β ε β ε ε ε ω ω
+ − +

=
+ − − +

 (51) 

 
For given 1n  and 3n , one can drive the maximum cooling load and corresponding COP of the quantum 
Carnot refrigerator, and these are the results obtained in Ref. [18]. 
(2) The frictionless case. In this case there are irreversibilities of heat resistance and bypass heat leakage 
in the cycle. The time spent on the two adiabatic processes is negligible (i.e. a b 0τ τ= = ), and equations 
(36) and (37) become 
 

h c h c

1
3 3 3 3 1 1 1 1

c

e c c

1 [(1 ) ln(1 ) ln (1 ) ln(1 ) ln ]

2 c e [1 (e 1) ]

R n n n n n n n n

C nλ β ω β ω

τ
β

ω

−= + + − − + + +
′

− − −

 (52) 

 
h c h ch

e c c
c h h c

1
3 3 3 3 1 1 1 1

1 12 c e [1 (e 1) ] {( )

[(1 ) ln(1 ) ln (1 ) ln(1 ) ln ]}

C n

n n n n n n n n

λ β ω β ωβ
ε ω τ

β β β β
−

′
= − − − −

′ ′ ′ ′−

× + + − − + + +

 (53) 

 
The cycle period is independent of bypass heat leakage so that the expression of cycle period in the 
frictionless case is still equation (46). At high temperature limit, equations (52) and (53) can be 
simplified to 
 

3 h c 1 3
e c h2

c c 3 1 h h 3 1

2a ( )( ) ln( )
( )

( ) ( )
x xy y x

R C
x y xy xy y

ω β β ω ω
α β β

β β ω ω β β ω ω
− −

= − −
− + + −

 (54) 

 
2

e c h c c 3 1 h h 3 1

3 h c 1 3

( )[ ( ) ( )]
1 2a ( )( )(1 ) ln( )

yC x x xx
x xy y x x

α β β β β ω ω β β ω ω
ε

ω β β ω ω
− − + + −

= −
− − − −

 (55) 
 

 
Using equations (54) and (55), one can not obtain the fundamental optimal relation between the cooling 
and COP analytically. Using numerical calculations, Figures 6 and 7 show the 

emax, 0, 0CR R µ ε= = −  curves 
(lines 1 and 4 in Figure 6 and line 1 in Figure 7) of the irreversible quantum refrigerator in the 
frictionless case, and the 

emax, 0, 0CR R µ ε= = −  curves are parabolic-like ones, the dimensionless cooling load 
has a maximum. 
(3) The case without bypass heat leakage. In this case, there are irreversibilities of heat resistance and 
internal friction in the cycle. Equations (36) and (37) become 
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13 32
3 2

c 3 2 2

1 111 ( ln ln ln )
1

n nn
R n n

n n n
τ

β
−+ ++

= − +
′ +

 (56) 
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13 34 4 2
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β β

β
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′+ + +

 (57) 

 
The cycle period is independent of bypass heat leakage, so that the expression of cycle period of the 
refrigerator in frictionless case is still equation (28). At high temperature limit, equations (56) and (57) 
can be simplified to 
 

2
3 a b h c 1 3 1 b

2 3 2 2 2 2
3 a b a b c 3 b a a b

2 2 2
c a b h 3 a b a b a b c 3 1

h h c 3 a b h a b 3 1

2a ( )( )[ln( ) ln(1 )]
( ) ( 2a ) [ 2a ( )]
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x xy y x y
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x y x y

x y xy xy
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ω τ τ β β ω ω µ ω τ
ω τ τ µ τ τ β ω τ µ τ τ τ

β τ τ β ω τ µ τ τ τ τ τ β ω ω
β β β ω τ τ β τ τ ω ω

− − − +
=

+ × − − − +

− − − + +

+ − + −

 (58) 

 
2

3 1 1 b
2 2

1 b 3 a 3 1

ln( ) ln(1 )
ln(1 ) ln( ) ( 1) ln( )

x x x y
x x y x xy x

ω ω µ ω τ
ε

µ ω τ µ ω τ ω ω
− − +

=
+ + + + −

 (59) 

 
Using equations (41), (58) and (59), one can drive the maximum cooling load and corresponding COP of 
the irreversible quantum Carnot refrigerator in the case without bypass heat leakage analytically for 
given 1n  and 3n . 
 
8. Conclusion 
In this paper, an irreversible quantum Carnot refrigerator model with working medium consisting of 
many non-interacting harmonic oscillators is established. The quantum refrigeration cycle is composed 
of two isothermal processes and two irreversible adiabatic processes. The irreversibilities of heat 
resistance, internal friction and bypass heat leakage are considered in the quantum refrigerator model. By 
using the quantum master equation, semi-group approach and FTT theory, this paper derives the 
equations of cycle period, cooling load and COP, and provides detailed numerical examples. The 
numerical examples show that the cooling load has a maximum, and the COP has a maximum with 
nonzero corresponding dimensionless cooling load when there exists a bypass heat leakage. The optimal 
performance of the quantum Carnot refrigerator at high temperature limit is derived and analyzed in 
detail with numerical examples, the optimal characteristic 

emax, 0, 0CR R µ ε= = −  curves are plotted, and 
effects of internal friction and bypass heat leakage one the optimal performance are discussed. Three 
special cases, i.e., endoreversible case, frictionless case and the case without bypass heat leakage, are 
discussed. The numerical examples show that both the cooling load and COP have maximums. The 

emax, 0, 0CR R µ ε= = −  curves are parabolic-like ones and the dimensionless cooling load has a maximum when 
there is no bypass heat leakage. When there exists bypass heat leakage, the 

emax, 0, 0CR R µ ε= = −  curves are 
loop-shaped ones. The internal friction decreases the cooling load and COP, but has no effect on the 
shape of the 

emax, 0, 0CR R µ ε= = −  curves. The obtained results include the fundamental optimal cooling load 
and COP characteristics in endoreversible case, frictionless case and the case without heat leakage. They 
are general and can enrich the FTT theory for quantum thermodynamic cycles. 
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Nomenclature 
a  parameter of heat reservoir ( 1s− ) t  time ( s ) 
â+ , â  the Bosonic creation and annihilation operators W  work ( J ) 
B  heat reservoir x  “temperature” ratio c hx T T′ ′=  

eC  dimensionless factor which describes the 
magnitude of the bypass heat leakage 

y  “temperature” B1 ( )k Tβ ′=  ( 1J − ) 

c  parameter of heat reservoir ( 1s− ) Greek symbols 
E  internal energy of the harmonic oscillator system (J) α  intermediate variable 
Ĥ  Hamiltonian β  “temperature” B1 ( )k Tβ =  ( 1J − ) 

 reduced Planck’s constant ( J s⋅ ) β ′  “temperature” of working medium 
B1 ( )k Tβ ′ ′=  ( 1J − ) 

Bk  Boltzmann constant ( J K ) γ + , γ −  phenomenological positive coefficients 

1L , 2L  Lagrangian functions ε  coefficient of performance 
m  intermediate variable λ  parameter of the heat reservoir 
N̂  number operator 1λ , 2λ  Lagrangian multipliers 
n  population of the harmonic oscillators µ  internal friction coefficient  
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0n  initial value of n  Γ̂  interaction strength operator 

cn  population of the thermal phonons of the cold 
reservoir 

τ  time ( s ) / cycle period ( s ) 

en  asymptotic value of n  ω  thermal phonon frequency ( 1s− ) / 
harmonic oscillator frequency ( 1s− ) 

Q  amount of heat exchange  ( J ) Subscripts 

Q̂α , Q̂α
+  operators in the Hilbert space of the system and 

Hermitian conjugate 
B  heat reservoir 

Q  rate of heat flow (W ) c  cold side 

Q′  amount of heat exchange between heat reservoir 
and working medium ( J ) 

h  hot side 

q  parameter of heat reservoir S  working medium system 
R  cooling load (W ) SB  interaction between heat reservoir and 

working medium system 
T  absolute temperature ( K ) 1, 2, 3, 4 cycle states 
T ′  absolute temperature of the working medium ( K )   
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