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Abstract 

The purpose of this paper is to investigate the dynamical behavior and the parametric primary instability 

of thin square elastic plate subjected to uniform in-plane uniaxial periodic compression load. The plate is 

assumed to be simply supported along its four edges (SSSS). Based on small deflection theory of plates, 

the value of natural frequency of free vibration and buckling load are determined by assuming the mode 

shape of vibration of plates simply supported along all edges. If the plate subjected to parametric 

excitation the plate lose its stability dynamically by flutter. The instability regions are found according to 

Bolotin's concept. In the present research the effects of excitation parameter and load value are studied. It 

is found that increasing both of the excitation parameter and loading value cause an increase in the 

regions of instability. An experimental work is conducted to verify the accuracy of the mathematical 

model. Good agreement between the theoretical and experimental results is obtained within 8% error. 

Copyright © 2016 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 

Thin plates as shown in Figure 1 are widely used in all fields of engineering which are subjected to static 

or dynamic loads like, mechanical, civil, aerospace engineering, architectural structures, marine, solar 

panels, bridges, hydraulic structures, containers, airplanes, missiles, ships, instruments and machine 

parts. 

Plates used in structure elements which subjected to in-plane periodic compression loads (dynamic load) 

may undergo unstable transverse vibrations, leading to a parametric resonance, due to certain 

combinations of the values of load parameters and natural frequency of transverse vibration. The study of 

the static and dynamic behavior of plate under the in-plane compression load is of certain importance, 

because this load affects the response of the plate. If the plate subjected to static in -plane compression 

load, it may be unstable statically. As the magnitude of this load increases, the natural frequency of 

vibration reduces and at the critical buckling load the natural frequency failed (becomes zero). If the 

plate subjected to a periodic in-plane compression dynamic loads, it will losses its stability dynamically 

in the form of resonant transverse vibrations. This phenomenon is known as ''parametric resonance''. 
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The study of dynamic instability started at (1831). This phenomenon was first observed by Faraday, 

when he noticed that when a fluid filled container vibrates vertically, fluid surface oscillates at half the 

frequency of the container.  

K. Takahashu, et al., [1], determined the natural frequency of free vibration, static buckling load and 

boundaries of regions of dynamic instability of a cantilever rectangular plate. Thin plate of small 

deflection theory was used to derive the governing equation of plates. The plate assumed to be subjected 

to an in-plane sinusoidally varying load applied along the free end. The vibration and buckling problems 

were solved according to Rayleigh-Ritz method, while the dynamic stability problem according to 

Hamilton's principle to derive time dependent variables. Unstable regions of dynamic instability are 

given for various loading conditions. Simple parametric resonances and combination parametric 

resonances are acquired for various loading conditions, static load and damping. 

J. H.Kim, [2], studied the dynamic instability of plates based on Kirchhoff plate theory and midline plate 

theory subjected to follower force using Finite Element Method. Four, nine and sixteen -node 

quadrilateral elements mesh is used to study the dynamic stability analysis of a thin plate under an in-

plane force and a follower force. The calculation results of these elements gave good agreement when 

compared with the analytical solutions. Also one can note that a sixteen-node quadrilateral midline 

element is the best element for studying dynamic instability of shear deformable plates. 

A. K. L. Srivastava, et al., [3], used the Finite Element Method to study the vibration and dynamic 

instability behavior of stiffened plate under the effect of in-plane periodic edges load. Various boundary 

conditions, varying mass and stiffness properties, aspect ratios and varying number of stiffeners have 

been discussed for dynamic instability using the method of Hill's infinite determinants. The results 

explain that the principal instability regions have significant effect. 

Q. Wang, et al., [4], studied the dynamic instability of variable stiffness thin-walled column under the 

effect of periodically alternating axial force neglecting the effect of damping. The variable stiffness 

means that it changes with periodically alternating axial force as for non-linear geometry stiffness matrix 

of thin-walled column. The second-order differential equations with period coefficients describes the 

dynamic instability of thin-walled columns were solved using Finite Element Method with the help of 

computer program represented by MatLab. The results give good agreement when compared with other 

calculation method.  

S. Z. Al-Sarraf, et al., [5], used the equivalent grid-framework model to study the problem of vibration 

and stability of plate behavior subjected to both dynamic and static load. Numerical results are offered 

for several example problems, and they show that the above method is reasonably accurate.  

A.K.L. Srivastava, et al., [6], used the finite element method to study vibration and buckling 

characteristics of stiffened plates under the effect of in-plane uniform and non-uniform edge loading. 

Various boundary conditions, aspect ratios, varying mass and stiffness properties and varying number of 

stiffeners have been analyzed for buckling and vibration studies. The equation of motion used to 

determine the characteristic equations for the natural frequencies, buckling loads and their corresponding 

mode shapes. This study also include the effects of aspect ratio, boundary conditions, the position of 

stiffeners and number of stiffeners parameters upon the buckling load parameter and fundamental natural 

frequency of the stiffened plates. The above results solutions give good agreement with other solution. 

Y. F. Zhou, et al., [7], used the exact solution to study the dynamic stability of viscoelastic rectangular 

plate subjected to tangential follower force. The boundary conditions used in this study one edge 

clamped and the other three edges are simply supported. The viscoelastic rectangular plate is supported 

by two opposite edges simply supported and other two edges clamped. Firstly, by assuming the mode 

shape of free vibration that satisfies the simply supported boundary conditions, the governing partial 

differential equation is transferred to an ordinary differential equation with variable coefficients. The 

results show that the aspect ratio is of great effects on the stability and the critical loads of the 

viscoelastic plates. 

In the present work, the primary instability regions of square plates are investigated using exact solution. 

Also experimental work is added to verify the accuracy of the theoretical work. 

 

2. Theoretical analysis 

2.1 Based equation  

When a load applied on a plate is parametric (static plus dynamic components), the plate will resonate 

(fluttering motion) in regions known as regions of instability. The parametric excitation load can be 

defined by [8]: 
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                   (1) 

 

By neglecting the effect of longitudinal vibration in the middle plane, then only the transverse vibration 

is of important interest and taking into account. Also neglecting the effects of shear deformation and 

rotary inertia, then the basic equation of vibration subjected to in-plane parametric load can be 

summarized as [8]: 

 

        
   

   
                

   

     (2) 

 

 
 

Figure 1. Plate geometry and sign convention. 

 

2.2 Primary regions of instability 

The primary regions of instability can be evaluated when the period of time is taken (2T) and the 

summation takes the odd values. If the plate is simply supported along all edges then the solution of Eq. 

(2) is written in the form [8]: 

 

                  
   

 
    

   

 
        (3) 

 

where: 

Akm: Constants. 

fkm(t): Unknown function of time. 

k,m : Number of half waves in the axial and transverse directions respectively.  

Substituting Eq.(3) into Eq.(2) gives: 
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After some mathematical manipulations, Eq.(4) can be written as: 
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)+     (5) 

 

where: 

   : Euler's buckling load (N). 

ωk,m: Natural frequency of free vibration (rad/sec). 

Equation.(5) is written in the form: 

 
   

   
   

                 (6) 
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where: ωs: Frequency of vibration of plates subjected to uniaxial in-plane compression static force 

(rad/sec). 
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The solution of Eq.(6) can be used to find the regions of dynamic instability, the function represent these 

regions is expressed by [8]; 
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where:      : Unknown coefficient. 

Substitute Eq.(8) into Eq.(6) results in the following equation: 
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Using the trigonometric relations and equating the coefficients of (sin (mθt/2))and (cos (mθt/2)) Eq.(9) 

leads to the following two equations in matrix form: 
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The order of the above two matrix equations is infinite and the size of the matrices is the same. Because 

of the solution related to the period 2T exists, then applying the condition of the existence of nontrivial 

solution (the determinant of the two matrices must be equated to zero). These two matrices may be 

combined together under the ∓ sign to calculate the determinant, in which the following equation results: 
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   (12) 

 

According to Bolotin's concept [8], using the first approximation, only the first diagonal element of the 

above matrix is taken and solved to give the boundaries of the upper and lower limits of the primary 

regions of dynamic instability; 
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    (13) 

 

Substitute Eqs. (7a) and (7b) into Eq.(13) gives: 

 
  

    
      

 

 
  (14) 

 

where:   
   

    
  

Equation (14) can be separated into two equations: 
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Equation (15) used to determine the upper limit of the primary instability region while Eq.(16) used to 

determine the lower limit. 

 

3. Experimental work 

3.1 Mechanical properties of plates 

The tensile test specimens are picked from the tested plate (stainless steel 304) according to as ASTM 

Number (A370-2012). This test is used to determine the tensile strength, yield strength and elongation of 

plates. This test was done in the standardization and quality control center gives the properties shown in 

Table 1. 

 

Table 1. Mechanical properties of tested plate. 

 

Properties Values Units 

Tensile strength 494 N/mm
2 

Yield strength 300 N/mm
2
 

Elongation% (Lo =80mm) 26 - 

Modulus of elasticity 183 GPa 

 

3.2 In-plane parametric compression load 

To apply the in-plane periodic compression load, the shaft which prepared for this purpose is constructed 

so that different amplitudes of excitation can be satisfied. The amplitude of excitation is controlled by 

shifting the shaft through the slot as illustrated in Figure 2. When the shaft imposed at slot center, the 

amplitude of excitation is zero (no excitation), while the maximum excitation is improved when the shaft 

imposed at the end of the slot. 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. Mechanism of creating the amplitude of excitation. 
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3.3 Accelerometer measurements  

A 3-axis accelerometer type ADXL335 and a microcontroller was used to receive the response of tested 

model (amplitude of vibration). The accelerometer measures the transverse acceleration of the plate due 

to dynamic load in the form of voltage signal. This accelerometer is connected to the computer through a 

microcontroller interface. 

The signal that picked from the accelerometer of the tested model which is processed by the 

microcontroller is a voltage signal. A calibration is carried out to convert the readings to amplitude. 
 

3.3.1 Calibration of accelerometer 

Calibration is done according to the relations shown below [9] and displayed on computer in the form of 

acceleration reading. 
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3.4 Stability test 

Table 2 shows the properties of the plates using in the stability test and Figure 3 shows the rig used in 

stability test. Figure 4 shows the flow chart of the testing rig. This study confirms the effect of periodical 

load and static load (spring under prescribed compression) on dynamic stability. To measure the 

frequency at which the plate loses its stability by flutter, the accelerometer is placed at the center of edge 

under excitation. The frequency of excitation increased until maximum vibration flutter is achieved. 

Figure 3 show the flowchart of stability test. 

This test is repeated for three values of excitation parameter (  = 0.129, 0.288, 0.433 ) so this gives three 

values of fluttering frequencies for the upper limit and three values of fluttering frequencies for the lower 

limit. These values of fluttering frequencies form the regions of primary instability. 
 

4. Results and discussions 

4.1 Theoretical results 

The values of limits of the primary instability regions depend on the excitation parameter (δ), load ratio 

(ratio of static load to bucking load (Ø)) and natural frequency of free vibration. The primary instability 

regions shifted to higher when the excitation increase, also the instability regions decreased with 

decreased the excitation parameter. The instability regions also increase with increase the natural 

frequency and decrease with decrease the natural frequency as you seen in eqs.(15) and (16). This 

attributed due to effect of stiffness on the mode of vibration. The enclosed area between the upper and 

lower limits refers to unstable regions as shown in Figure 5. 

To investigate the effect of the excitation parameter (δ) on regions of instability, this parameter is 

changed in a suitable range while the other affecting parameters are fixed at suitable values. In general 

the excitation parameter δ is changed from 0 to 0.5 and the value of nondimensional load is fixed at 0.3 

(Ø = 0.3). It is shown that the width of instability regions increased with increasing δ as shown in Figure 

6. This is attributed to the fact that the energy transferred from the load source to the plate increased with 

increasing the excitation parameter. This transferred energy will be increased as the frequency is 

increased because the amplitude of vibration is constant. Also one can deduce from this figure that the 

region of the instability increases for higher modes due to effect of stiffness on the mode of vibration. 
 

Table 2. Properties of the plates used in the experimental work. 
 

Parameter  Value Units 

Length (a) 0.3 M
 

Width (b) 0.3 M 

Thickness (h) 0.0008 M 

Density ( ) 7800 Kg/m
3 

Modulus of Elasticity (E) 183 GPa 
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The effect of the in-plane compression fluctuating load on primary instability regions is illustrated in 

Figure 7. In this figure the value of loading is changed in the range 0-0.5 and the value of excitation 

parameter is fixed at 0.3. As shown in this figure, the band of frequencies (between upper and lower 

limits) that the plate loses its stability by flutter increased as the load increased. This behavior can be 

attributed to the time period of the harmonic fluctuation of the uniaxial in-plane compression load occurs 

at period 2T. The flutter that appears at this period can be caused by increasing the load causing an 

increase in the inertia forces delivered in the structure; therefore the size of the unstable region becomes 

wider. Also one can deduce from this figure that the region of the instability increases for higher modes 

due to effect of stiffness on the mode of vibration. 

 

 
 

Figure 3. Stability testing rig. 

 

 
 

Figure 4. Flow chart of the testing rig. 
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Figure 5. Primary instability region of square plate. 

 

 
 

Figure 6. Effect of excitation parameter on primary instability regions of SSSS plate, Ø = 0.3. 

 

 
 

Figure 7. Effect of excitation parameter on primary instability regions of SSSS plate, δ = 0.3. 
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4.2 Experimental results 

The experimental verification on the dynamic stability of square plate simply supported along all edges is 

carried out to check the accuracy of the theoretical values. The properties of plates used in this study are 

listed in Table 2. The stiffness of spring used to apply static load is (ks = 2368.134 N/m) and the stiffness 

of the spring that used to apply dynamic load is (kd = 1367.514 N/m). The experimental results may be 

summarized as follows: 

1. The effect of excitation parameter (  = 0.129, 0.288, 0.433 ) on the regions of dynamic instability of 

square plate is illustrated in Figure 8. This study is done by fixing the value of the load (Ns = 47.362 

N) where a spring used to applied static load is compressed at distance 2cm). The differences between 

experimental results and theoretical results gives good agreement with error less than 7%, Table 3. 

Figure 9 shwos the acceleration curve (amplitude of vibration) of experimental primary instability 

regions.  

2. The effect of loading (Ns = 47.362, 94.075, 139.135) on the theoretical and experimental regions of 

dynamic instability of square plate are illustrated in Figure 10. This experiment is done by fixing the 

value of the excitation parameter at (  = 0.129). The differences between experimental results and 

theoretical results gives good agreement with error less than 8% as shown in Table 4. 

The differences between anlytical results and experimental works due to many causes conclude, the mass 

of accelerometer is neglected, neglect the effect of shear strain in the xz plane and zy plane, neglected the 

effect of normal stress in z- direction and neglected the effect of structure damping. 

 

 

 
 

Figure 8. Theoretical and experimental effects of excitation parameter on primary instability region of 

SSSS plate. 

 

 

Table 3. Comparison between experimental and theoretical results of flutter frequency due to the effect 

of excitation parameter Ns = 47.362 N. 

 

Theoretical flutter 

frequency (rad/sec)  

Experimental flutter 

frequency (rad/sec) 

Differences % 

510  476 6.666
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Figure 9. Acceleration curve for dynamic instability with excitation parameter (  = 0.433). 

 

 
 

Figure 10. Theoretical and experimental effects of loading on primary instability region of SSSS plate. 

 
Table 4. Comparison between experimental and theoretical results of flutter frequency due to the effect 

of loading   = 0.129. 

 

Theoretical flutter 

frequency (rad/sec)  

Experimental flutter 

frequency (rad/sec) 

Differences % 

504  468 7.14
 

 
5. Conclusions 

Throughout the present study the following conclusion can be withdrawn: 

1. The band of frequencies that the plate loses its stability by flutter increased with increasing of the 

excitation parameter. 

2. The band of frequencies that the plate loses its stability by flutter increased with increasing of the load 

value. 

3. The regions of instability increase as the mode of vibration increases. 
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Nomenclatures 

Symbols Definitions Units 

                 m/s
2 

a length of plate mm 

b Width of plate mm 

D Flexure rigidity N/m 

                    m/s
2
 

  Thickness of plate mm 

Ns Magnitude of static load N 

                    ⁄  

                                      

                         

                   

                   

  Displacement in z direction (transverse displacement) Mm 

Greek symbols  

  Excitation parameter - 

θ Excitation frequency rad/sec 

  Density of plate kg/m
3
 

ωs Frequency of vibration of plates subjected to uniaxial in-

plane compression static force 

rad/sec 
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