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Abstract 
The requirement of the in advance knowledge of the future photovoltaic (PV) production in the domestic 
field for a better allocation of the on-site PV generation to the local load demand and the available 
storage facilities is more and more emerging. In this study two different methods were applied so as to 
forecast the next hour PV power using artificial neural networks (ANN). In the first case the weather 
parameters of solar irradiance and ambient temperature were predicted, the output was fed to the 
developed model of the PV installation and the next hour PV power was computed. In the second case it 
was attempted to predict directly the PV power. The performance of the applied ANNs was compared 
with the respective outcomes from the persistence models. In each case the applied ANN outperforms the 
persistence model. In addition, during the evaluation phase the extracted annual energy results were 
compared with the respective registered data from the installed meters. Again in both cases the results 
approximated the reality, though in the first case the difficulty in identification and representation of 
malfunctions in operation of the PV plants due to snow accumulation on the panels caused minor 
deviations. 
Copyright © 2017 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
In an era when more and more households install photovoltaic (PV) panels and attempts to succeed self-
autarky are increasing, the necessity for the in advance knowledge of the daily or hourly renewable 
energy production from PV installations is rising. Especially in cases where also stationary storage 
systems are available, the prospect of storing surplus of locally produced energy at times when the 
weather conditions are favorable and feed it back to the house when domestic loads are significantly 
increased during the day, necessitates the beforehand assessment of future PV energy production. 
In this context several studies have already been implemented dealing with the prognosis of PV energy 
production. The clustering of all these studies in generalized categories depends on the respective 
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selected parameter. That can be the forecast variable, the method used or the forecast horizon. After a 
thorough analysis of the recent studies, it was detected that most of them, which deal with the subject 
“PV energy forecasting” focus on predicting the solar radiation, since this is the most significant 
parameter influencing the output of a PV plant [1-13]. Others though prefer to predict the PV output 
itself avoiding intermittent steps of weather parameters forecast and then calculation of the future 
production [14-24].  
The most prominent solar forecasting methods were grouped and included in various reviews for solar 
forecasting methods. Indicatively in Innman’s et al. [25] systematic review, the forecasting methods have 
been separated into the following categories: regressive methods, artificial intelligence techniques, 
remote sensing models, numerical weather prediction (NWP), local sensing and hybrid systems. A 
similar classification has been also adopted from Wan et al. [26]. In the IEA report [27] the classification 
is conducted according to the forecasting horizon. Intra-day (from 0 to 6 hours ahead) and mesoscale 
forecasts (from 6 hours to days ahead) constitute the two timescales selected to be examined. Finally, 
Diagne et al. [28] adopt an own classification in three subcategories, namely the statistical models, the 
cloud imagery and satellite based models, and the NWP and the hybrid models.  
What can be concluded from all these reviews is that there is not an optimal method or model for all 
forecast categories. Depending on the timescale, the site, the available input variables different 
techniques are applied for best results. Furthermore, calculated metrics for evaluation of the various 
models are not identical, so a comparison among them is not feasible. 
Indicatively in Table 1 a collection of various recent forecast studies is summarized. Developed forecast 
models show the diversity in this field and the weakness in identifying the most suitable model for every 
case. ANN, regression methods and hybrid models with their principal attributes are listed below. 
In the current study, algorithms based on artificial intelligence tools, were developed in order to estimate 
renewable energy production in a hypothetical dwelling, in order to increase its autarky and self-energy 
consumption and so as to efficiently manage domestic produced energy during a day. The assumed 
residence is located in Wolfenbüttel, a central north city of Germany, and has two PV installations, of 
5.1kW and 1.02kW. The referred plants are real facilities of the Laboratory for Electrical Engineering 
and Renewable Energy Systems at the Faculty of Supply Engineering in the Ostfalia University of 
Applied Sciences in Wolfenbüttel (Figure 1) and power data obtained from installed meters are utilised 
for validating and verifying the simulation results.  
The 1st Plant with installed power of 5.1 kW is consisting of two strings of 30 modules each. Each string 
consists also of two times of 15 modules in series and then in parallel connected. The solar panels are 
south oriented with a fixed angle to the ground of 30o. The plant is connected to the grid via 2 sting 
inverters Sunny Boy 2000 from the SMA company. The 2nd plant with installed power of 1.02 kW is 
composed of one string of 12 modules, it is also south oriented but its angle is adjustable and for every 
month in the year new determined, so as to benefit from the increase of the tilt angle during the winter 
and in summer coming to a more flat position. In this case the on-site produced energy is fed into the 
public grid via the Inverter Sunny Boy 1200 from the SMA [29]. The coordinates of the installed solar 
panels are 52°10'32.4"N, 10°32'52.0"E. 
The climate of North Germany can be addressed to the category Cfb according to Koeppen’s climate 
classification [30]. This type of climate is dominated all year round by the polar front, leading to 
changeable, often overcast weather. Summers are cool due to cool ocean currents, but winters are milder 
than other climates in similar latitudes, but usually very cloudy [31]. Great solar irradiance fluctuations 
are dominant all year around leading to unstable PV energy production during the day. These abrupt 
ramps are difficult to forecast, thus introducing an additional challenge to the addressed problematic 
when the appropriate and most reliable technique or method to forecast solar irradiance in such a place is 
to be detected.  
The requirement for a more adaptive model to forecast PV power in regions with often overcast skies 
appears to be emerging after the systematic analysis of the reviewed literature, where most of the models 
are validated with data stemming from areas where the solar irradiance is not fluctuating abruptly or they 
have high annual direct normal irradiance. As Cornaro et al. state in [32], although the short term 
forecasting could be achieved by developing artificial neural network (ANN) models with simple 
algorithms that make use of local weather measurements as well as statistical parameters, the forecast is 
not that successful when it refers to places with unstable weather conditions. Countries such as Turkey, 
Spain, Australia or Italy are extensively mentioned in such studies, while places with more cloudy 
conditions, such as Germany are rare or appear not at all in the literature.  
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Table 1. Synopsis of publications on solar radiation forecast. 
 
Authors Forecast 

Variable 
Method Input Variables Site Forecast 

Horizon 
Error 
Metrics 

Melit et al. [1] Solar Irradiance ANN (Multilayer 
Perceptron MLP) 

Mean Daily Solar 
Irradiance and Air 
Temperature 

Italy 24-h K-fold 
cross-
validation

Hocaoglu F. 
A. et al. [2] 

Solar Irradiance ANN Day, Hour, Solar 
Irradiance 

Turkey 1-hour RMSE, 
R2 

Melit et al. [3] Global, Diffuse 
And Direct 
Solar Irradiance 

Adaptive a-Model Sunshine Duration, Air 
Temperature and 
Relative Humidity 

Saudi 
Arabia 

1-hour R2, MBE 

Marquez R. et 
al. [4] 

Global 
Horizontal 
Irradiance, 
Direct Normal 
Irradiance 

ANN Predicted 
Meteorological 
Variables from the US 
National Weather 
Service’s (NWS) 

California, 
USA 

Up to 6 
days 

MBE, 
RMSE, 
R2 

Huang J. et al. 
[5] 

Solar Irradiance Combination of an 
autoregressive 
(AR) model with a 
dynamical system 
model 

Solar Irradiance Australia 1-hour MeAPE 

Yang, D. et al. 
[6] 

Solar Irradiance 
Including Cloud 
Cover Effects 

ARIMA Global Horizontal 
Irradiance (GHI), 
Diffuse Horizontal 
Irradiance (DHI), Direct 
Normal Irradiance 
(DNI) and Cloud Cover 

Miami and 
Orlando, 
USA 

1-hour MBE, 
RMSE 

Martin L. et 
al. [7] 

Global Solar 
Irradiance 

Autoregressive, 
Neural Networks 
and Fuzzy Logic 

Global Solar Irradiance Spain 3 days rRMSD 

Cao J. et al. 
[8] 

Global Solar 
Irradiance 

Recurrent Neural 
Network (RNN) 
with Wavelet 
Neural Network 
(WNN) 

Global Irradiance, 
Cloud Cover and 
Related Temperature 

China 1-hour 
to 1-day 

RMSE, 
R2 

Chatziagorakis 
P. et al. [9] 

Solar Irradiance Recurrent Neural 
Network (RNN) 

Solar Irradiance Greece 1-hour MSE 

Wang F. et al. 
[12] 

Solar Irradiance ANN Irradiance Gsavg (n), 
Third-Order Derivative 
(TODmax(n)) and 
Normalized Discrete 
Difference (NDD(n)) of 
Solar Irradiance, 
Ambient Temperature 
Tavg(n) & Date 
Sequence Number n 

China 24-hour MAPE, 
RMSE, 
MABE 

Azimi R. et al. 
[13] 

Solar Irradiance Hybrid Method, 
based on a 
clustering 
technique and an 
MLP ANN 

Solar Irradiance Iowa, 
USA 

1-hour RMSE, 
nRMSE, 
Forecast 
Skill 

Ding M. et al. 
[14] 

PV Power ANN Power Output, 
Temperature 

Oregon, 
USA 

24-hour MAPE 

Lonij V.P.A. 
et al. [15] 

PV Power Calculation of 
clearness index K 
based on Cloud 
Velocity 

Plane of Array (POA) 
Irradiance, Cloud 
Velocity 

Arizona, 
USA 

15 min 
to 90 
min 

MBE, 
RMSE 

Izgi E. et al. 
[16] 

PV Power ANN Solar Power Turkey 0-
300min 

RMSE 
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Table 1. Continued. 
 

Authors Forecast 
Variable 

Method Input Variables Site Forecast 
Horizon 

Error 
Metrics 

Fernandez-
Jimenez A. et 
al. [17] 

PV Production NWP with ANN Inputs from NWPs, 
Hourly Electrical 
Energy Generation 

 1 to 39 
h 

RMSE, 
MAE, 
ME 

Bessa R.J. 
[18] 

PV Power AR, ARX Solar Power Portugal 1-hour RMSE 

Sumaili J. et 
al. [19] 

PV Generation Electrical based 
Model 

NWP inputs South of 
Europe 

72-hour NMAE, 
NRMSE 

Dolara A. et 
al. [20] 

PV Power Hybrid Method, 
based on an 
Artificial Neural 
Network (ANN) 
and PV plant clear 
sky curves 

Weather Forecasts 
provided by the Meteo 
Service 

Italy 24, 48 
or 72-
hour 

NMAE, 
WMAE, 
nRMSE 

Chaouachi A. 
et al. [21] 

PV Production ANNs Vapor pressure, 
humidity, cloud 
coverage, sunshine 
duration, temperature, 
irradiation and the SPG 
(solar power 
generation) output 

Japan 24-hour MAD, 
MAPE 

Monteiro C. et 
al. [22] 

PV Power MLP NN and 
analytical PV 
power forecasting 
Model (APVF) 

Data from NWP and PV 
power Generation 

Spain 1-hour RMSE 

De Giorgi 
M.G. et al. 
[23] 

PV Power ANN PV Power, Ambient 
Temperature, Module 
Temperature, Irradiance 
on Plain 3° and 
Irradiance on Plain 15° 

Italy 1-hour nMAPE 

Almonacid F. 
et al. [24] 

PV Power ANN Global Irradiance, 
Temperature 

Spain 1-hour RE 

 

 

(a) 
 

(b) 
 

Figure 1. The installed PV Power plants of (a) 5.1kWp Plant with 60 modules; (b) 1.02kWp Plant with 
12 modules. 

 
Conducting a trivial but reliable forecast without relying on exogenous sources, such as websites or tools 
with weather data prognosis, is another differentiation of this study from the existing ones. Moreover, the 
need for a parsimonious model that is well generalized in pertinent cases was also considered of great 
importance during the development phase.  
In the frame of this study a comparison of two different methods of forecasting the PV power output is 
conducted. First the ambient temperature and the global solar irradiance of the site where the PV plants 
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are installed were forecast, since the PV energy production is promptly associated with these two 
parameters [33]. Consequently the temperature and solar radiation forecast values were transmitted to the 
already developed PV model for the two installations [34], from which the future solar PV power and 
energy for the two PV plants were calculated. The second method includes the direct PV power output 
forecast without the intermittent steps of forecasting weather parameters and then estimating the 
respective PV generation. The forecast results were compared with the outcomes from respective 
persistence models as well as with the measured values and conclusions on both techniques were drawn. 
In the next sections the applied methodology is described as well as all the intermittent steps for 
extracting the required results and then a comparison of the two methods with the real registered data and 
outcomes from the persistence models is conducted.  
 
2. Data retrieval and methodology 
For forecasting the on-site PV generation two criteria were the most significant: First, the acquisition of 
reliable data and second the application of suitable techniques which would provide trustworthy 
forecasts. In the following sections the source of the utilized data as well as the methodology of the 
employed techniques are analyzed. 
 
2.1 Data retrieval 
The scientific methodology followed for the forecasting part was based on time-series data, which are 
collected with fixed time-step of one second by a weather station from the Thies Clima company located 
on the roof top of the Faculty of Supply Engineering at the Ostfalia University of Applied Sciences in 
Wolfenbüttel, Germany. The Clima Sensor 2000 measures among others the temperature with a standard 
platinum-resistant-thermometer Pt100 (acc. to DIN IEC 751) of long-term stability and high accuracy 
[35]. Moreover, a net radiometer, which ideally absorbs solar radiation of all wavelengths directed 
downward toward the earth’s surface and upward away from it [36] and subsequently measures the 
difference between them, is used to measure the intensity of solar radiation. Both devices are displayed 
in Figure 2. In addition, the installed meters U1281 from the Gossen Metrawatt company for each PV 
plant transmit several network variables. The device has a digital counter for the display of the energy 
production and internal counters for the metering the power import and export and the active and reactive 
components of them. In addition, instantaneous current, voltage and power factor values are also 
accessible. The transmission of measured values, the recording and provision, as well as the storage of 
them are possible through a Local Operating Network (LON) bus system, the Open Platform 
Communications (OPC) technology and the database system MySQL [29]. 
 

 
 

(a) 
 

 

(b) 
 

Figure 2. (a) Weather station Clima sensor 2000 (Thies Clima); (b) Net radiometer. 
 
The used data derive from three consecutive years, namely 2011, 2012 and 2013. Figures 3a, 3b and 3c 
show the distribution of solar irradiance during a time interval of one year. The intensity of radiation 
during the days is characterized from higher values and longer periods of sunshine in summer. Dark blue 
areas in the graph show zero values in the night and low intensity in winter days.  
The ambient temperature trend for the same years is also rendered in the Figure 4. Warmer colors state 
higher values achieved in summer days while colder colors are depicting the cooler days in winter. 
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(a) 
 

(b) 
 

(c) 
 

Figure 3. (a) Solar radiation [W/m2] in 2011; (b) Solar radiation [W/m2] in 2012; (c) Solar radiation 
[W/m2] in 2013. 

 

 
 

(a) 
 

(b) 
 

(c) 
 

Figure 4. (a) Ambient temperature [oC] in 2011; (b) Ambient temperature [oC] in 2012; (c) Ambient 
temperature [oC] in 2013. 

 
2.2 Methodology 
So as to estimate the next one hour values of the global solar irradiance, the ambient temperature as well 
as of the direct PV power, three different ANNs for each time series were applied.  
In the following chapter the models are described and explained analytically and the details of each one 
are presented through equations and schemas.  
 
2.2.1 Artificial neural network 
Temperature, radiation and power forecast models were formed based on ANNs. The ANNs are 
preferred for estimations of non-linear parameters and their architecture is mostly organised in layers. 
The ANNs can be classified into two big categories: the Feedforward (FF) and the Recurrent NNs. The 
first do not include any acyclic graphs while the latter distinguishes itself because it has feedback loops. 
Moreover, the if the ANN includes just an input and output layer then we refer to it as Single-Layer 
Perceptron Network (SLP). Otherwise, if also one or more hidden layers intervene between input and 
output units, the ANN is designated as Multilayer Perceptron (MLP). In each hidden layer multiple 
neurons are addressed. The process of calculating the output value of the NN includes the multiplication 
of the input value xij with a weight wij amplified with a threshold (or bias value) ϑij by applying the 
activation function f. In Figure 5 a graphical representation of the general structure of a MLP feed 
forward neural network is depicted.  
Architectures of Nonlinear Autoregressive (NAR) and Nonlinear Autoregressive with Exogenous input 
(NARX) were applied in this study for forecasting the three different variables. These two types of 
ANNs are classified also into the MLP FF architecture. It should be stated here that NAR and NARX 
approaches do not contain internal feedback and they are purely feedforward as it is mentioned in e g 
[37-39]. These two categories of ANNs are defined respectively from the equations (1) and (2) that 
follow:  
 

)),…,y(t-d)),y(t--y(t)=f(y(t 21  (1) 
 

)),…,x(t-d)),x(t-,x(t-),…,y(t-d)),y(t--y(t)=f(y(t 2121  (2) 
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where d is the delay parameter in the model. 
For activation function a Sigmoid Symmetric Transfer Function fk was applied and is calculated 
according to the following equation:  
 

k-uk e
=  f

+1
1

 (3) 

 
where uk is the sum of all the inputs and bias values . 
 

 
 

Figure 5. Graphical depiction of a MLP FF Neural Network Architecture 
 
The training phase that followed was meant to adjust the weights with regards to minimising a specific 
statistical metric between the target and the output value. In this case the data division was randomly 
selected and the performance was evaluated from the Mean Squared Error (MSE). Finally, the 
Levenberg-Marquardt optimisation technique is used as a back propagation algorithm of the NN during 
the training process since it converges faster, while the learning dataset was divided in three subsets, 
namely 70%, 15% and 15% for the training, validation and testing phase. The networks were trained in 
open loop form avoiding so the intrusion of divergent output into the design process. The extracted 
function in each case is used to forecast the next hour values and the model are actually a one-step-ahead 
predictor. It should be stressed out that although data with time resolution of one second were available, 
for the sake of computational speed a time resolution of 24 samples per day (mean value per hour) was 
considered adequate for the training phase; consequently the processing time is reduced without losing in 
accuracy. The proposed process was designed and computed on the Neural Time Series Tool of Matlab.  
 
2.2.2 Extraterrestrial radiation 
For the calculation of the forecast values of the global irradiance and the direct PV power output the 
extraterrestrial radiation Bo(0) is required as input to the applied NARX model. Its computation on a 
horizontal surface for the years 2011, 2012 and 2013 is based on the following equation [40]:  
 

zsooo θεB)(B cos0 ××=  (4) 
 
where Bo is the solar constant (1367 W/m2), εo is the eccentricity correction factor, ϑzs is the solar zenith 
angle. 
The eccentricity correction factor εo, which describes the deviation of the Earth elliptic orbit from the 
circular [40], is given by: 
 

J´.εo cos03301 ++=  (5) 
 
where J´ is a parameter which is defined by the equation (6):  
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aYearrofDayTotalNumbe
arDayoftheYeJ o

sin
360` ×=  (6) 

 
and the solar zenith angle ϑzs is the complementary angle of the sun altitude γs: 
 

s
o

zs γ−= 90ϑ  (7) 
 
For the calculation of the sun altitude γs the adopted computation method was based on the DIN 5034 
Norm [41]. According to it several parameters have to be computed in advance before calculating the 
needed sun altitude γs. In particular the solar declination δ(J´) and the time equation Teq are calculated as 
follows:  
 

ooo

o

JJ
JJ

)}26´3cos(1764.0)4.5´2cos(3915.0
)1.9´cos(2559.233948.0{´)(

+××−+××

−+×−=δ
 (8) 

 

min)}2.105´3cos(3387.0)9.108´2cos(9359.9

)9.85´cos(3525.70066.0{´)(
oo

o
eq

JJ

JJT

+××++××

++×−=
 (9) 

 
From the local time LT the time zone and the longitude of the region the local mean time LMT is 
extracted as given below: 
 

oLongitudeTimeZoneLTLMT min/4 ××+−=  (10) 
 
Then the local apparent time LAT and the time angle ω are calculated before completing with the 
calculation of the sun altitude γs [42]: 
 

´)(JTLMTLAT eq+=  (11) 
 

hLATh o /15)00.12( ×−=ω  (12) 
 

)sinsincoscosarcsin(cos δφδφωγ ×+××=s  (13) 
 
where φ is the local Latitude. 
 
2.2.3 Simulation of PV installation 
The transformation of the forecast radiation and temperature data to DC power values delivered from a 
solar module considering the characteristics of the PV installations is conducted based on the 
mathematical analytical study of Perpiñan, Lorenzo and Castro [33]. According to it the DC output 
power PDC of one module is related to the following parameters as described below: 
 

( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−×−×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= *

* 1 cc
eff

peakeffDC TT
G
G

PnP β  (14) 

 
where neff is a correction factor for losses from modules mismatching, diodes and dirt (91%), Ppeak is the 
rated power of one module (W), Geff is the effective global radiation (W/m2), G* is the radiation in 
standard conditions (1000W/m2), β is the temperature losses coefficient (0.005/°C), TC is the operation 
cell temperature, T*

C is the standard operation cell temperature (25°C). 
The operation temperature Tc is calculated as follows: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−+=

NOCT

eff
stdNOCTambc G

G
TNOCTTT )( ,  (15) 
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where Tamb is the ambient temperature (°C), NOCT is the nominal operation cell temperature (47°C), 
TNOCT,std is the ambient temperature at NOCT conditions (20°C), GNOCT is the radiation at NOCT 
conditions (800W/m2). 
The above mathematical calculation is represented from a Matlab/ Simulink model with input variables 
the global solar irradiance and the ambient temperature. So as to calculate the AC output of the plants the 
inverters were also modeled as Lookup Tables in Matlab/ Simulink based on the characteristic curve of 
the manufacturer SMA. 
 
3. Results and discussion 
3.1 Forecast results 
So as to identify the optimal network in each forecast case, different architectures were tested in order to 
identify the number of neurons and the respective time delay to apply. Specifically, for the ambient 
temperature forecast needed to predict the PV energy production a Feed Forward ANN with the 
Nonlinear Autoregressive (NAR) architecture was selected. For the applied architecture an open loop 
network, with 1 hidden layer with 10 artificial neurons and a time delay of 72 samples was selected.  
In the case of the global radiation forecast a Nonlinear Autoregressive with exogenous input (NARX) 
network was preferred. The external input parameters were the hour of the day as well as the calculated 
extraterrestrial radiation according to the method described in Chapter 2.2.2 and in this case the applied 
architecture included an open loop network, with 1 hidden layer with 20 artificial neurons and a time 
delay of 3 samples.  
The architecture of the neural network for the direct PV power forecast was almost identical to the one 
applied for the radiation forecast. It was namely a NARX network with the same external input variables 
and the same number of hidden layers (1) and artificial neurons (20) but with a differentiation in time 
delay steps. 24 samples were essential for assuring an adequate training process. The schematic diagram 
for each case study is illustrated in Figure 6. The ANNs were trained always with time series data from 
2011. The regression analysis from the training, validation and testing phase for all three forecast cases is 
presented in Figure 7. 
 

 
 

(a) 
 

(b) 
 

(c) 
 

Figure 6. Graphical diagram of the (a) NAR for temperature forecast; (b) NARX for radiation forecast; 
(c) NARX for PV power forecast. 

 

 
(a) (b) (c) 

 
Figure 7. Regression analysis of the training, validation and testing phase between measured and forecast 

values for (a) Temperature; (b) Radiation; (c) PV power. 
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Finally the trained neural networks were applied for forecasting the next step ahead values of the 
respective parameter (forecast horizon of one hour) for a period of one year. It should be noted here that 
the trained networks were Figures 8-10 show during indicative time periods the match of predicted and 
measured values for the years 2012 and 2013 respectively. 
 

 
(a) 

 
(b) 

 
Figure 8. (a) Comparison of measured and forecast temperature in 2012; (b) Comparison of measured 

and forecast temperature in 2013. 
 

 
(a) 

 
(b) 

 
Figure 9. (a) Comparison of measured and forecast solar radiation in 2012; (b) Comparison of measured 

and forecast solar radiation in 2013. 
 

 
(a) 

 
(b) 

 
Figure 10. (a) Comparison of measured and forecast PV Power in 2012; (b) Comparison of measured and 

forecast PV Power in 2013. 
 
From the graphical depiction of the measured and forecast data it is obvious that the respective values 
match each other during many time steps. Rumps and abrupt fluctuations are not always foreseen but 
great mismatch and deviations from the actual values are not noticed, apart from some exceptions during 
the year. So as to estimate the success and adequateness of the applied methods two statistical error 
indicators are introduced namely the Mean Absolute Error (MAE) and the Root Mean Square Error 
(RMSE), which are calculated according to equations 16 and 17. In the Table 2 the total MAE and 
RMSE between the actual and forecast values for the years 2012 and 2013 are presented. The results are 
low enough to consider the forecast as reliable. 
 

( )∑ −=
n

measipredi YY
n

MAE
1

,,
1

 (16) 
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 (17) 

 
where Yi,pred is the predicted value, Yi,meas the measured one and n the sample size. 
 

Table 2. Errors between forecast and measured values. 
 

Temperature Solar Radiation PV Power  MAE RMSE MAE RMSE MAE RMSE 
Year 2012 0.44 oC 0.64 oC 26.7 W/m2 55 W/m2 200 W 362 W 
Year 2013 0.41 oC 0.59 oC 26.9 W/m2 53 W/m2 184 W 334 W 

 
3.2 Evaluation of results 
So as to examine how satisfying the followed methods are and subsequently the finesse of the extracted 
results a benchmark reference model has been selected to compare the outcomes. For each case a 
persistence model was chosen. According to its definition, the model assumes that the output value of the 
time series remains the same for the time step (t+1)h as it was at time step t. Although its calculation is 
considered trivial, it is in fact quite difficult to produce a forecast model which outperforms the 
persistence one and therefore it is chosen in most cases as a reference benchmark model to evaluate the 
newly designed forecast techniques [26].  
In Table 3 the total errors RMSE and MAE for the year 2013 are indicatively presented. These errors 
were calculated every time between the predicted value for the time step (t+1)h and the measured one at 
the same time step.  
 

Table 3. Errors of the measured values from the reference persistence model and the NN model. 
 

Temperature Solar Radiation PV Power  MAE RMSE MAE RMSE MAE RMSE 
Persistence Model 0.63 oC 0.92 oC 37.5 W/m2 73 W/m2 554 W 1173 W 
ANN Model 0.41 oC 0.59 oC 26.9 W/m2 53 W/m2 184 W 334 W 

 
As it is inferred from the results, the developed models have a better performance from the persistence 
one for forecast horizon of one hour, since they deliver smaller errors. The ANNs achieve significantly 
closer outputs to the reality in comparison to the reference models, and the forecast models applied to 
predict the next hour values of the parameters outperform the persistence ones.  
Finally by feeding the forecast values of ambient temperature and solar irradiance to the Simulink model 
of the PV plants, which is described in section 2.2.3 and also presented in Dimopoulou et al. [34], the 
predicted PV power per hour is calculated. Consequently, the yearly on-site renewable energy was 
calculated and the same variable was also estimated from the direct forecast PV power output. The 
results are presented in Table 4. In particular the first column includes the energy as it was measured 
from the installed meters, the second one is the energy extracted from the Simulink model when the real 
registered global radiation and the ambient temperature data were given as input values. The third 
column is the computed energy from the Simulink model when the input parameters were the forecast 
values of radiation and temperature and the last one includes the energy extracted from the direct PV 
power forecast values.  
 

Table 4. Errors of the forecast power values from measured and simulated ones. 
 

 Measured 
energy 

Energy from 
Simulink model 

Energy from forecast 
radiation & temperature 

Energy from 
forecasting PV power 

Year 2012 5.37 MWh 5.44 MWh 5.47 MWh 5.38 MWh 
Year 2013 4.86 MWh 5.23 MWh 5.27 MWh 4.90 MWh 

 
Great deviations are not observed though in 2013 it is detected that the measured energy differs 
noticeably from the one stemming from the Simulink model. This mismatch is not caused by an 
inadequate model or unreliable input data. It is occurring due to the particularly heavy winter, when large 
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quantities of snow were covering the PV panels, thus causing a reduced renewable energy sources (RES) 
production, given the available solar radiation and temperature. Since the model is not considering the 
snow accumulation it was not possible to foresee such a reduced production. It is therefore expected that 
the energy from the direct PV power forecast approaches the measured one (since the modelling process 
does not intervene) whereas the forecast energy computed based on the forecast values of the radiation 
and the temperature verges on the energy extracted from the simulation of the real weather values. To 
summarise, both methods of forecasting the next hour PV power are delivering reliable outputs though 
the direct forecast of PV power is producing data closer to the measured actual values. 
 
4. Conclusions  
In this paper it was studied the adequateness of the direct PV power forecasting instead of forecasting the 
weather variables of global radiation and ambient temperature and subsequently calculating the next hour 
PV power output for the two installed plants. The ANN method was applied in each case and the ‘future’ 
value was computed. In the first case the next hour temperature and radiation values were fed in the 
Simulink model and then the PV power and the annual energy were extracted while in the second case 
from the direct forecast of the PV power the annual energy production was calculated. No great deviations 
were noticed though the direct PV power forecast approximated more the measured values whereas the 
forecast energy derived from the predicted weather parameters of global radiation and temperature 
approached the annual energy extracted from the Simulink model with input the real weather values.  
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