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Abstract 
A combined cooling, heating and power plant (CCHPP), composed of an endoreversible closed Brayton 
cycle and absorption refrigerator, is studied in this paper. By introducing the finite time thermodynamics, the 
formula of the exergy output rate (EOR) of the CCHPP is derived. With the help of Powell arithmetic, the 
compressor pressure ratio of the Brayton cycle and distributions of 7 heat exchanger heat conductances 
(HEHCs) are optimized, and the maximum EOR of the CCHPP is obtained. It shows that the hot-side HEHC 
is the largest one among the discussed HEHCs, and several parameters, such as the total HEHC and ratio of 
heat reservoir temperature to the surrounding temperature, on the optimal performances of the CCHPP are 
analyzed. 
Copyright © 2017 International Energy and Environment Foundation - All rights reserved. 
 
Keywords: Finite time thermodynamics; CCHPP; Exergy performance; generalized thermodynamic 
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1. Introduction 
Recently, with the increasingly paying attention on energy and environmental problems, the combined 
cooling heating and power plant (CCHPP) gradually becomes a topic of interest [1, 2]. Various scholars 
have investigated the CCHPPs based on the method of classical thermodynamics. Lozano et al. [3] 
investigated the thermo-economic index of the CCHPP with specified user demand, and obtained the 
minimum variable cost based on linear programming method. They pointed out that the heat prices had 
evident effects on the production costs, and the best approach was determined by the issue conditions. 
Zheng et al. [4] investigated the operation strategy of a CCHPP, and compared the strategy of minimum 
distance with the other three strategies. They indicated that the performance of the CCHPP and building 
was well matched, which illustrated the advantage of the minimum distance strategy. Wang et al. [5] 
studied the energy and exergy performances of a biomass CCHPP, and chose different operational flows 
according to different seasons. They pointed out that the energy and exergy efficiencies of the biomass 
CCHPP were 50% and 6.23%, respectively, in summer, and the consumption of the biomass was reduced 
by 4% when waste heat was recovered. Ju et al. [6] considered the performances of the CCHPP from the 
viewpoint of energy, economic and environment, and implemented multi-objective optimizations based 
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on these indexes. The results showed that the CCHPP with distributed energy resource led to the 
reduction of CO2 emission when the wind and solar energies were used.  
Finite time thermodynamics (FTT) [7-28] has many superiorities in the optimizations of thermodynamic 
cycles and processes. Lots of scholars optimized the performances of Brayton cycle cogeneration plants 
(BCCPs) based on FTT. Yilmaz [29] analyzed the exergy output rate (EOR) of a BCCP, and showed that 
a lower heat consumer temperature led to a higher EOR. Hao and Zhang [30, 31] maximized the useful 
energy rate and EOR of a BCCP, and showed that the maximum EOR led to a higher EOR performance 
but a lower exergy efficiency (EE) of the BCCP. Ust et al. [32-34] studied the exergetic performance 
coefficients (EPCs) of the BCCPs with regenerative Brayton, Dual and Dual Miller cycles, respectively, 
and showed that the results of the BCCPs obtained based on maximum EPC had a superiority in the 
aspect of entropy generation rate. Tao et al. [35, 36] and Chen et al. [37] investigated the 
exergoeconomic performances (EPs) of the endoreversible [35, 36] and irreversible [37] BCCPs, and 
found that their performances could be improved by optimizing heat conductance distributions (HCDs), 
compressor pressure ratio (CPR) and heat consumer-side temperature, respectively. Yang et al. [38-47] 
studied the EOR and EP of the endoreversible [38-42] and irreversible [43-47] intercooled regenerative 
BCCPs, and obtained different optimal HCDs and optimal pressure ratios based on the maximizations of 
the profit rate and EE of the BCCP, respectively.  
Absorption refrigerator is an important part of the CCHPP. Based on FTT analyses of the absorption 
refrigerators [48-56] and BCCPs [29-47], FTT is also introduced into the performance analyses of the 
CCHPPs [57, 58]. Chen et al. [57] investigated the EP of a CCHPP with endoreversible closed Brayton 
cycle (ECBC), and derived the maximum profit rate by choosing the optimal cycle parameters. Yang et 
al. [58] further implemented exergy analyses of a CCHPP with regenerative ECBC, and pointed out that 
EOR and EE increased when the regenerator heat conductance (HC) was increased for a small pressure 
ratio. Based on the model in Ref. [57], the EOR performance of a CCHPP, composed of an ECBC and an 
endoreversible four-heat-reservoir absorption refrigeration cycle (EFHRARC), will be analyzed in this 
paper. The EOR will be maximized by varying the HCDs and pressure ratio of the ECBC, respectively, 
and optimal results will be analyzed at different parameter conditions.   
 
2. Cycle model 
Figures 1 and 2 show the model and T-s diagram of the CCHPP, respectively. There are 4 heat reservoirs, 
and their temperatures are HT , LT , '

gT  and hT , respectively. There are 4 processes in the Brayton cycle. 
Isentropic adiabatic processes locate point 1 to 2 and point 3 to 4, and the working fluid is compressed 
and expanded in the two processes, respectively. The working fluid receives heat ( HQ ) from temperature 

HT  between point 2 to 3. The working fluid first releases heat ( KcQ ) to temperature '
gT  of the absorption 

refrigerator between point 4 and 5, then releases heat ( KhQ ) to temperature hT  of the thermal consumer 
between point 5 to 6, and finally releases heat ( LQ ) to temperature LT  of the heat sink. The power output 
of the CCHPP is P .  
The four heat transfer processes above occur in four heat exchangers (HEs). The heat transfer equations 
of the four HEs can be given as:  
 

3 2 2( ) ( )H wf wf H HQ C T T C E T T= − = −  (1) 
 

6 1 6( ) ( )L wf wf L LQ C T T C E T T= − = −  (2) 
 

'
4 5 4( ) ( )Kc wf wf g gQ C T T C E T T= − = −  (3) 

 
5 6 5( ) ( )Kh wf wf h hQ C T T C E T T= − = −  (4) 

 
where wfC is the constant thermal capacity rate, and ),,,( LhgHiEi =  is the effectiveness of each HE. 

Ei is defined as:  
 

),,,(1 LhgHieE iN
i =−= −  (5) 
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where Ni is the number of heat transfer unit of each HE, and it can be given as:  
 

/i i wfN U C= ---( , , ,i H g h L= ) (6) 
 
where Ui is the HC of each HE.  
When the Brayton cycle is endoreversible one, the following relationship is satisfied:  
 

2 1 3 4/ /T T T T x= =  (7) 
 

where k
k

x
1−

= π  is the isentropic temperature ratio, π  is the pressure ratio of process 1-2, and k is the 
specific heat ratio of the working fluid.  
 

 
 

Figure 1. Schematic diagram of CCHPP. 
 

 
 

Figure 2. T-s diagram of heating and power generation of CCHPP. 



International Journal of Energy and Environment (IJEE), Volume 8, Issue 5, 2017, pp.375-388 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2017 International Energy & Environment Foundation. All rights reserved. 

378 

Figure 3 shows an EFHRARC driven by the heat transfer rate KcQ . There exit four parts in the 
refrigerator, i.e., generator, absorber, condenser and evaporator, and the temperatures of which are '

gT , 
'

aT , '
cT  and '

eT , respectively. The heat transfer rate between the working fluid of the refrigerator and 
temperature '

aT  is aQ , and those of the temperatures cT  and '
eT  are cQ  and eQ , respectively.  

The heat transfer equations in the EFHRARC are:  
 

'( )a a a aQ U T T= −  (8) 
 

'( )c c c cQ U T T= −  (9) 
 

'( )e e e eR Q U T T= = −  (10) 
 
where R  is the cooling load, and jU  ( , ,j a c e= ) is the HC of each HE. When the power input of the 
solution pump is ignored [51-55], the COP and heat distribution released to aT  and cT  are given as:   
 

/e KcQ Qε =  (11) 
 

/a cn Q Q=  (12) 
 
When the EFHRARC is endoreversible one, the following relationships are satisfied:  
 

0Kc e a cQ Q Q Q+ − − =  (13) 
 

' ' ' '/ / / / 0Kc g e e a a c cQ T Q T Q T Q T+ − − =  (14) 
 
From Eqs. (3) and (8)-(14), the relationship between R  and KcQ  can be expressed as [51]:  
 

4

( ) / [ ( 1)] ( ) / [ ( ) ( 1)]
/ ( ) / ( )

c Kc Kc c c a Kc Kc a a

e e e wf Kc g wf g Kc

U Q R Q R U T n nU Q R n Q R U T n
U R U T R C Q E C E T Q

+ + + + + + + + + =
                      − + −

 (15) 

 

 
 

Figure 3. EFHRARC model. 
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3. Performance analyses 
The power output of CCHPP can be obtained based on its energy balance equation:  
 

H L Kh KcP Q Q Q Q= − − −  (16) 
 
The temperatures and heat transfer rates can be obtained by combining Eqs. (1)-(4), (7) and (16):  
 

1

1
(1 )(1 )( 1) ( )

(1 )(1 )( 1)
h H H h L h h L h L L

h h H h L

T E E E x x  + E T E T +E T  
T

 E E E E x
ω

ω

−− − − −
=

+ − − −
 (17) 

 
1 1

4
(1 )(1 )(1 ) (1 )( )

(1 )(1 )( 1)

  
h H H L h h H h L h L L h H H

h h H h L

T E E E x +E E T E T +E T +E E T x
T

E E E E x
ω

ω

− −− + − − −
=

+ − − −
 (18) 

 
1

5
( 1) [ (1 ) ]

(1 )(1 )( 1)
h h h H H h h L L L

h h H h L

 T E + x  E T x T E E T E
T

 E E E E x  
ω

ω

−− − − −
=

+ − − −
 (19) 

 
[ ( )]

(1 )(1 )( 1)
wf H h H h L h L L

H
h h H h L

C E E T x T E T +E T
Q

E E E E xω
− −

=
+ − − −

 (20) 

 
1[ ( ) (1 )( 1)( )]

(1 )(1 )( 1)
wf L h h L h H h H L

L
h h H h L

C E E T T E E x T x T
Q

 E E E E x      
ω

ω

−− + − − −
=

+ − − −
 (21) 

 
1

1

[1 (1 )( 1)] (1 )[ ( 1) 1]

( )( 1) ( )
(1 )(1 )( 1)

H H h wf h L h h H wf L h

h H L wf L H h L wf h L L H
Kc

h h H h L

T E E x C E x +T E E C E x

+ E E C T T x x E E C T T +T E      
Q

E E E E x

ω ω

ω
ω

−

−

− − − − − −

− − − −
=

+ − − −
 (22) 

 
1( 1)( )

(1 )(1 )( 1)
h H h wf H h h L L L

Kh
h h H h L

E E C x  T  x T +T E E T
Q

E E E E x
ω

ω

−− − −
=

+ − − −
 (23) 

 
1( 1)( )

(1 )(1 )( 1)
H h wf H h h L L L

h h H h L

E E C x  T  x T +T E E T
P

E E E E xω

−− − −
=

+ − − −
 (24) 

 
where hω  is the ratio of KhQ  to P  [29], which is set as constant in the equations.  
The EOR brought by the power is: 
  

1( 1)( )
(1 )(1 )( 1)

H h wf H h h L L L
P

h h H h L

E E C x  T  x T +T E E T
EX P

E E E E xω

−− − −
= =

+ − − −
 (25) 

 
The cooling EOR brought by the EFHRARC is:  
 

0( / 1)Kc eEX R T T= −    (26) 
 
where 0T  is the surrounding temperature, and R  can be obtained by substituted Eqs. (5), (6),  (18) and  
(22) into Eq. (15). The analytical solution is hard to apply in the calculation, and numerical solution is 
adopted instead.  
The thermal EOR brought to the thermal consumer is [35]:  
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0
1

0

(1 / )

( 1)( )( )
(1 )(1 )( 1)

Kh Kh h

h H h wf h H h h L L L

h h h h H h L

EX Q T T

E E C x T T  T x T +T E E T
T E T E E E x

ω
ω

−

= −

− − − −
        =

+ − − −

 (27) 

 
The exergy input and output rates of the whole CCHPP are:  
 

0 0(1 / ) (1 / )I H H L LEX Q T T Q T T= − − −  (28) 
 

P Kh KcEX EX EX EX= + +  (29) 
 
From Eqs. (25)-(27) and (29), the dimensionless EX  can be given as:   
 

1 1

1 1 1
0

0

(1 )( 1)( )

( 1)[ (1 )(1 )( 1)]
(1 )(1 )( 1)

H h h h h H h h L L L

wf c h h H h L

wf h h H h L

E E x  x + E E

C T R E E E E xEXEX =
C T E E E E x

ω ω τ τ τ τ τ

τ ω
ω

− −

− − −

+ − − − −

+ − + − − −
=

+ − − −
 (30) 

 
where 0/H HT Tτ = , 0/h hT Tτ = , 0/L LT Tτ =  and 0/c eT Tτ =  are the temperature ratios.  
From Eqs. (28) and (29), the EE of the CCHPP can be given as:  
 

/ IEX EXη =  (31) 
 
Substituting Eqs. (20), (21), (28) and (29) into (31) yields:  
 

1 1

1 1 1
0

1 1 1

1 1

(1 )( 1)( )

( 1)[ (1 )(1 )( 1)]

[(1 ) ( ) (1 )( 1)(1 )( 1)]

(1 )( 1) ( 1) ( )

H h h h h H h h L L L

wf c h h H h L

H L H h h L h H L L h

h L L h L H h H H h

 E E x   x  + E E   

T C R E E E E x

E E E x x E x

+E E  E E  x   

ω ω τ τ τ τ τ

τ ω
η

τ τ τ ω τ τ τ

τ τ τ τ τ τ

− −

− − −

− − −

− −

+ − − − −

+ − + − − −
=

− − + − − − −

− − − − −

 (32) 

 
The model of the CCHPP includes many special cases. When 0hω =  and 0KcQ = , the CCHPP is 
simplified into single Brayton cycle; when 0hω =  and 0KcQ ≠ , it is simplified into the cogeneration 
cycle with cooling and power plants; when 0hω ≠  and 0KcQ = , it is simplified into the CHP plant.  
 
4. Performance optimizations  
From Eq. (30), when the parameters ( Hτ , hτ , Lτ , cτ , 0T , hω  and n ) are specified, the dimensionless 
exergy output rate (DEOR) of CCHPP is related to the pressure ratio (π ) and HCs iU  
( , , , , , ,i H L h g a c e= ). When 2 /g a c e hU U U U U kW K= = = = =  and 10 /H LU U kW K+ = , the effects of 
pressure ratio π  and HCD Hu  ( / ( )H H LU U U= + ) on the DEOR are shown in Figure 4. One can see that 

Hu  and π  can be optimized, and DEOR has its maximum. Similarly, when the total HC TU  of the HE is 
fixed, i.e, H L h g a c e TU U U U U U U U+ + + + + + = , iU  ( , , , , , ,i H L h g a c e= ) can be also optimized 
simultaneously. Using the similar method adopted for performance optimizations of gas turbine closed-
cycle CHP plants [29-47], the DEOR of the CCHPP will be maximized by taking π  and iU  
( , , , , , ,i H L h g a c e= ) as optimization variables, respectively.   
The HCDs of the HEs are given as:  
 

/ , / , / , /

/ , / , /
H H T L L T h h T g g T

a a T c c T e e T

u U U u U U u U U u U U

u U U u U U u U U

= = = =

= = =
 (33) 

 
The following conditions should be satisfied:   
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0 1, 0 1, 0 1, 0 1, 0 1

0 1, 0 1, 1
H L h g a

c e H L h g a c e

u u u u u

u u u u u u u u u

< < < < < < < < < <

< < < < + + + + + + =
 (34) 

 
The HCs can be rewritten as:  
 

, (1 ) ,

, , ,
H H T L H h g a c e T h h T

g g T a a T c c T e e T

U u U U u u u u u u U U u U

U u U U u U U u U U u U

= = − − − − − − =

= = = =
 (35) 

 

 
 

Figure 4. Characteristic of EX  versus Hu  and π . 
 
The temperature constraints of the CCHPP are given as follows:  
 

1 1 2 2 3 3 1 6 6

6 5 5 4 4 3 1 3 2 4

, , , , ,
, , , 0

L H hT T T T T T T T T T T T
T T T T T T T T T T
< < < < < <

< < < + − − >
 (36) 

 
Figure 5 shows the optimization flow chart for DEOR. The optimization steps are given as follows:   
(1) The initial values of the parameters and variables ( Hu , hu , gu , au , cu , eu  and π ) are set.  
(2) The HCs are calculated based on Eq. (35). If Eqs. (34) and (36) are satisfied, the program can 

continue, else return to the step of initial values.  
(3) The cooling load of the EFHRARC and DEOR are calculated based on Eqs. (15) and (30).  
(4) The maximum DEOR is searched based on Powell arithmetic. If the maximum DEOR is obtained, 

the program can continue, else return to the step of initial values. 
(5) The optimal results of the CCHPP are obtained. The maximum DEOR, optimal HCDs and pressure 

ratio are exported. 
 
5. Numerical examples 
In the numerical examples, the parameters of the CCHPP are set as: 20 /TU kW K= , 1.4k = , 

1.0 /wfC kW K= , 5Hτ = , 1.2hτ = , 1Lτ = , 0.5hω = , 1n = , 280eT K= , 303cT K= , 303aT K= , and 

0 303T K= .  
Figure 6 shows the characteristics of the optimal DEOR optEX  and optimal HCDs ( ( )H optu , ( )L optu , 
( )h optu , ( )g optu , ( )a optu , ( )c optu  and ( )e optu ) versus pressure ratio π . One can see that optEX  has its 
maximum value ( maxEX ), and the corresponding optimal π  and HCDs are signed as EXπ  and ( )i EXu  
( , , , , , ,i H L h g a c e= ), respectively. Figure 7 shows the effect of the ratio hω  on the optimal DEOR 
( optEX ) versus EE 

EX opt
η  characteristic. It indicates that optEX  has its maximum value ( maxEX ), and 

maxEX  increases when the ratio hω  increases.  
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The characteristics of the HCDs ( )i EXu  ( , , , , , ,i H L h g a c e= ) and EXπ  versus Hτ  and TU  are shown in 
Figures 8 and 9, respectively. The effects of hτ , cτ  and hω   on  the optimal variables are also numerically 
analyzed. They indicate that ( )H EXu  and ( )L EXu  are larger than ( )h optu , ( )g optu , ( )a optu , ( )c optu  and ( )e optu ; 
due to the heat distribution 1n = , the curves of ( )a EXu  and ( )c EXu  coincide with each other; when Hτ  
increases, ( )g EXu , ( )a EXu , ( )c EXu  and ( )e EXu  decrease, and ( )H EXu , ( )h EXu , ( )L EXu  and ( )EXπ  increase; 
when hτ  increases, ( )g EXu , ( )a EXu , ( )c EXu , ( )e EXu  and ( )EXπ  decrease, and ( )H EXu , ( )h EXu  and ( )L EXu   
increase; when cτ  increases, ( )g EXu , ( )a EXu , ( )c EXu , ( )e EXu  and ( )h EXu  decrease, and ( )H EXu , ( )L EXu  and 
( )EXπ  increase; when hω  increases, ( )g EXu , ( )a EXu , ( )c EXu , ( )e EXu , ( )L EXu  and ( )EXπ  decrease, and 
( )H EXu  as well as ( )h EXu  increase; when TU  increases, ( )g EXu , ( )a EXu , ( )c EXu  and ( )e EXu  increase, and 
( )H EXu , ( )L EXu  and ( )EXπ  decrease. Meanwhile, TU  has no obvious effect on ( )h EXu .  
 

 
 

Figure 5. Flow chart of exergy output rate optimization routine. 
 
 

 
 

Figure 6. Characteristics of ( )g optu , ( )a optu , ( )c optu , ( )e optu , ( )H optu , ( )h optu , ( )L optu  and optEX  versus π . 
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Figure 7. Effect of hω  on optΠ  versus 
opt

ηΠ  characteristic. 

 

 
 

Figure 8. Characteristics of ( )g EXu , ( )a EXu , ( )c EXu , ( )e EXu , ( )H EXu , ( )h EXu , ( )L EXu  and EXπ  versus Hτ . 
 

 
 

Figure 9. Characteristics of ( )g EXu , ( )a EXu , ( )c EXu , ( )e EXu , ( )H EXu , ( )h EXu , ( )L EXu  and EXπ  versus TU . 
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The characteristics of maxEX  and EXη  versus Hτ  and TU  are shown in Figures 10 and 11, respectively. 
The effects of hτ , cτ  and hω   on  maxEX  and EXη  are also numerically analyzed. They indicate that with 
the increases in Hτ , hτ  and hω , both maxEX  and EXη  increase; with the increases in cτ , maxEX  decreases, 
and EXη  increases; with the increases in TU , maxEX  increases, and EXη  increases a little at first, then 
decreases a little, that is, TU  only has a slight effect on EXη .  
 

 
 

Figure 10. Characteristics of maxEX  and EXη  versus 

Hτ . 

 
Figure 11. Characteristics of maxEX  and EXη  versus 

TU . 
 
6. Conclusions 
Based on FTT, a CCHPP, composed of an ECBC and EFHRARC, is studied in this paper. The DEOR 
and EE performances are optimized. It indicates that DEOR has its maximum value ( maxEX ), and the 
optimization variables π  and HCDs reach their optimal values, respectively. The HCDs ( )H EXu  and 
( )L EXu  are larger than ( )h optu , ( )g optu , ( )a optu , ( )c optu  and ( )e optu . Due to the heat distribution 1n = , the 
curves of ( )a EXu  and ( )c EXu  coincide with each other. The effects of Hτ , hτ , cτ , hω  and TU  on the 
optimal performances of the CCHPP are also analyzed. This paper uses FTT to investigate the optimal 
exergy performance of a CCHPP theoretically, which enriches FTT theory. Moreover, many ideal 
assumptions are made in the model of this paper, one can further build more practical model to carry out 
optimization of the CCHPP.     
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Nomenclature 
C          heat capacity rate   ( /kW K ) 
E          heat exchanger effectiveness  
EX       exergy output rate (EOR)   ( kW ) 
EX       dimensionless EOR 

PEX      EOR brought by the power   ( kW ) 
KcEX    cooling EOR brought by EFHRARC  ( kW ) 
hEX      thermal EOR brought to the thermal consumer ( kW ) 
IEX      total EOR of the CCHPP   ( kW ) 

N         heat transfer unit number  
n          total heat distribution  
P          power output of CCHPP   ( kW ) 



International Journal of Energy and Environment (IJEE), Volume 8, Issue 5, 2017, pp.375-388 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2017 International Energy & Environment Foundation. All rights reserved. 

385

Q          heat transfer rate   ( kW ) 
T           temperature   ( K ) 
U          heat conductance   ( /kW K ) 
u           heat conductance distribution 
x           isentropic temperature ratio  
Greek symbols 
ε           performance coefficient of the EFHRARC 
η           exergy efficiency  
π           pressure ratio 

hω          heat ratio   
τ           temperature ratio  
Subscripts 
a             absorber-side 
c             condenser-side 
e             evaporator-side/cooling consumer-side 
g             generator-side 
H            hot-side 
h             thermal consumer-side 
I             total exergy input rate 
L             cold-side 
max         maximum 
opt          optimal 
T             total 
wf           working fluid 
EX          maximum dimensionless EOR 

optEX       optimal dimensionless EOR 
0              ambient 
1, 2,3,4,5,6      state points of the cycle 
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