Performance of advanced photocatalytic detoxification of municipal wastewater under solar radiation - A mini review

Chandan Singh, Rubina Chaudhary, Rajendra Singh Thakur

School Of Energy and Environmental Studies, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore-452001, M.P., India.

Abstract

During the last few years, there has been a plethora of research and development in the area of solar photocatalysis. The aim is to understand the fundamental processes and enhance photocatalytic efficiencies especially for air, soil and water pollution control. Municipal waste water is limited by continual organic water pollutants and micro-organisms that are not removed by conventional mechanical and biological treatment. In this overview of the most recent paper, studies focused on the treatment of municipal wastewater (containing organic compounds) by photocatalysis and the effects of various parameters such as pH, light intensity, Advance oxidation method etc. have been studied. It can be concluded that the photocatalysis process is suitable for the treatment of drinking water, municipal and industrial wastewater. Some studies on the economic analysis of photocatalytic systems are also included.

Copyright © 2011 International Energy and Environment Foundation - All rights reserved.

Keywords: Solar photocatalysis, Photocatalytic reactors, Municipal wastewater treatment, Solar radiation, Photo-Fenton.

1. Introduction

In recent years, it has been found that solar photocatalytic detoxification is one of the promising methods for the disinfection and treatment (colour, odour, COD etc.) of the municipal wastewater. The combination of light and catalysts has proven very effective for water purification [1]. Conventional water and wastewater treatment processes have been long established in removing many chemical and microbial contaminants of concern to public health and the environment. However, the effectiveness of these processes has been increasingly challenged with the identification of more and more contaminants, rapid growth of population and industrial activities and diminishing availability of water resources [2]. Solar heterogeneous or homogeneous photocatalytic method is suitable for the municipal wastewater of small communities and villages, where there is a wide variation of the population between winter and summer seasons. This variation leads, during the year, to wastewater effluents with very different hydraulic and organic load, thus causing problems to the biological treatment plants and leading therefore to effluents of low quality [2]. The treatment technology, including advance oxidation process (AOPs), and solar irradiation, the emphasis was placed on their basic principles, applications, and new technology developments. Advantages and disadvantages of these technologies are compared to highlight their current limitations and future research needs [3]. The major applications investigated for this technology are colour removal; [4-9] reduction of COD

The present review aims are to develop a method which takes care of energy saving & water recycle/reuse together. Photocatalytic detoxification will be investigated through laboratory experiments as an alternative to conventional secondary treatment. It is very important to develop processes for the clean-up of polluted water [1]. This study was to utilize different chemical oxidation method for reducing refractory organic matter in municipal wastewater [30]. Moreover, to the best of our knowledge the application of solar detoxification for the zero effluent discharge at household level has not yet been investigated [1]. In conventional treatment methods, lot of energy is wasted and also they generate harmful by-products. Instead of these, photo catalytic oxidation method can be used as

(i) It is eco-friendly, very less sludge generation, energy efficient and sustainable method.
(ii) It does not create any harmful by-products

1.1 Solar ultraviolet radiation potential in India

Earth receives 1.7x10¹⁴ kWh, meaning 1.5x10¹⁹ kWh per year of solar radiation, which is approximately; 28000 time the world energy consumption per year [31]. In a tropical country like India ((8º4”-37º6” N latitude), highest level of global solar UV radiation is received. Adequate amount of Solar UV radiation is received for almost 10 months a year. Average mean peak irradiance of Solar UV- A is 47 W/m² - 66 W/m² and average mean peak irradiance of Solar UV- B is 0.195 W/m² - 0.3384 W/m² [32]. Nearly, 95-98% of the sun ultraviolet radiation reaching the earth’s surface is UV- A. Only 2-5% of UV light at the earth surface is solar UV - B. Practically all of UV - C and much of UV- B is absorbed by the ozone and the atmosphere.

According to Blanco et al. [33] the UV radiation represents between 3.5% and 8% of the solar spectrum, fluctuating with the presence of clouds and increasing with altitude. The percentage of global UV radiation (direct + diffuse), with regard to the global, generally increases when the atmospheric transitivity decreases, mainly due to clouds, but also to aerosols and dust [34]. In fact, the average percentage of UV with respect to total radiation on cloudy days is upto 2% higher than values on clear days. Since the UV radiation is not absorbed by water vapor, as much as 50% of this, or more in very humid locations or during cloudy or partly cloudy periods, can be diffused. The diffuse component can make up to 50% of the total available UV light even on a clear day because the shorter wavelengths UV photons are more readily scattered within the atmosphere. Solar energy available in various regions is typically 8.3% ultra-violet (200-400 nm), 38.2% visible (400-700 nm), 28.1% near infra-red (700-1100 nm) and 25.4% infrared/far-infrared portion. Figure 1 shows the ultraviolet spectrum on the earth surface.

![Figure 1. Ultraviolet spectrum on the earth surface](image-url)
2. Photocatalytic reactors

Photocatalysis has been a subject of increasing interest during the last twenty years. It has various potential applications such as metal recovery, abatement of NOx, synthesis of ammonia but the recent development have been induced mainly by the application to the abatement of organic pollution both in the aqueous and the gaseous phase. This development participates to the general concern about the environment and the increasing constraints on the toxicity of wastes [36].

As the compound parabolic concentrators (CPCs) do not concentrate light inside the photoreactor, the system is outdoor and is not thermally insulated; the maximum temperature achieved inside the reactor during the experiments is 45°C. Solar ultraviolet radiation UV was measured by a global UV radiometer (KIPP & ZONEN, model CUV3), mounted on a platform tilted 37° (the same angle as the CPCs), which provides data in terms of incident W_{UVm^2}. This gives an idea of the energy reaching any surface in the same position with regard to the sun. With equation (1) combining of the data from the experiments of several days and their comparison with other photocatalytic experiments is possible [37].

\[Q_{\text{UV,n}} = Q_{\text{UV,n-1}} + \Delta t_n UVG_{\text{TOT}} \frac{A_{\text{CPC}}}{V_{\text{TOT}}} \]

where, t_n is the experimental time for each sample, UVG_{n} is the average UVG during Δt_n, A_{CPC} is the collector surface, V_{TOT} is the total plant volume and $Q_{\text{UV,n}}$ is the accumulated energy (per unit of volume in kJL$^{-1}$) incident on the reactor for each sample taken during the experiment.

2.1 Type of photocatalytic reactors

In recent year several reactors for the solar photocatalytic treatment have been developed and tested. Both type of solar reactors exhibit specific advantages and disadvantages, which are summarized in Table 1.

Table 1. Comparison between non-concentrating and concentration system used in solar photocatalytic application [38-41]

<table>
<thead>
<tr>
<th>Non-concentrating collector</th>
<th>Concentrating collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantage</td>
</tr>
<tr>
<td>Direct and diffuse radiation</td>
<td>Laminar flow (low mass transfer)</td>
</tr>
<tr>
<td>No heating</td>
<td>Vaporization of reactants</td>
</tr>
<tr>
<td>Low cost and fewer mainten ance requirements</td>
<td>Reactant contamination and mass transfer problems in photocatalysis</td>
</tr>
<tr>
<td>High optical efficiency</td>
<td>Weather resistance, chemical inertness and ultraviolet transmission</td>
</tr>
<tr>
<td>High optical efficiency ($r = k I$ with TiO2)</td>
<td>Water overheating</td>
</tr>
<tr>
<td>Since recombination of e^-/h^+ is lower than in a concentrating system beca-use the photonic density is lower, they have both high optical efficiency and high quantum efficiency</td>
<td>Reactant contamination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulent flow</td>
<td>Only direct radiation</td>
</tr>
<tr>
<td>No vaporization of compo unds</td>
<td>High cost (sun tracking)</td>
</tr>
<tr>
<td>More practical use of a supported catalyst as less is needed per unit collector surface</td>
<td>Low optical efficiency and usually expensive</td>
</tr>
<tr>
<td>More practical use of a supported catalyst</td>
<td>Low optical efficiency</td>
</tr>
<tr>
<td>Smaller reactor tube area</td>
<td>Low quantum efficiency ($r = k I^{1/4}$ with TiO2</td>
</tr>
<tr>
<td>There is no evaporation of volatile compounds</td>
<td>Lower optical efficiency and quantion of e^-/h^+ than in non-concentration systems</td>
</tr>
<tr>
<td>Possible water overheating</td>
<td></td>
</tr>
</tbody>
</table>
2.1.1 Parabolic trough reactor (PTR)
A PTR concentrates the parallel (Direct) rays of the photocatalytically active ultraviolet part of the solar spectrum by a factor of 30 to 50 and can be characterized as a typical plug flow reactor. In the wavelength range which can be used for the excitation of TiO$_2$ (UV-A, 300-400nm) the diffuse \(E_{\text{dif}}(300-400) = 24.3\, \text{W/m}^2\) and direct \(E_{\text{dir}}(300-400) = 25.0\, \text{W/m}^2\) portion of the solar radiation (AM 1.5) reaching the surface of the earth are almost equal [42-44].

2.1.2 Thin-film-fixed-bed reactor (TFFBR)
Solar photons can also be used without further concentration in a fixed bed reactor system. The TFFBR employs both the diffuse portion of the solar radiation. Coating of the plate was achieved using P25 TiO$_2$ from Degussa followed a patented method [43-46].

2.1.3 Double skin sheet reactor (DSSR)
A new kind of non concentrating reactor is DSSR [47-49]. This type of reactor employs both the direct and diffuse portion of the solar radiation, but after the degradation process the photocatalysis has to be removed from the liquid.

3. Solar photocatalytic degradation of contaminants
Finally Photocatalysis mineralizing the contaminants into carbon dioxide, water, and inorganic, practical applications of solar technologies have been studied and developed most intensively for heterogeneous TiO$_2$ photocatalysis and homogeneous photo-Fenton. There is no general rule at all, each case being completely different [39, 40].

In general, the types of compounds that have been degraded include alkanes, haloalkanes, aliphatic alcohols, carboxylic acids, alkenes, aromatics, haloaromatics, polymers, surfactants, herbicides, pesticides, and dyes. Equation 1 generally holds true for a general organic compound equation (2) of \(C_nH_mO_p\) [41].

\[
C_nH_mO_p + \left(\frac{m+2n}{4} + n\right)O_2 \rightarrow nCO_2 + \frac{m}{2}H_2O
\]

Apart from developments on increasing photocatalytic reaction rate, the most important progress in solar photocatalysis, in recent years has been related to combination with biological treatment and the application of toxicological analytical methods. Contaminant treatment, in its strictest meaning, is the complete mineralisation (TOC=0) of the contaminants, but photocatalytic processes only make sense for hazardous non-biodegradable pollutants. [40] Therefore, biologically recalcitrant compounds could be treated with photocatalytic technologies until biodegradability is achieved. Subsequently, the water can be transferred to a conventional biological plant. Such a combination reduced treatment time and optimised the overall economics, since the solar detoxification system can be significantly smaller [50, 51]. As shown in Figure 2, the active component disappears after several minutes of irradiation, but TOC remains after several hours. Therefore, the use of AOPs as a pre-treatment can be justified if the intermediates resulting from the reaction (more oxidized compounds, such as carboxylic acids, alcohols, etc.) are readily degraded by micro-organisms [52, 53]. The treatment, based on the photo-Fenton reaction [54-57], mineralizes 80% of the TOC in the rinse water in a batch process.

4. Effects of operating parameters
The rate of photo mineralization of an organic compound depends on the nature of the photocatalyst, catalyst loading, reactor configuration, concentration of the compound, wavelength, radiant flux, pH and advance oxidation processes in presence of interfering adsorbing species and mass transfer (especially for immobilized TiO$_2$).

4.1 Effect of pH
pH of the aqueous solution significantly affects TiO$_2$ including the charge of the particle and the size of the aggregates it forms. The pH at which the surface of an oxide is uncharged is defined as the Zero Point Charge (pH$_{zp}$), which for TiO$_2$ is around pH 7 [58]. K. Okamoto et al. [59] suggested a pH of 3.5 as optimal for the degradation of phenol (with reduced anatase) in contrast to another study on alkaline pH
conditions, which concluded that alkaline conditions are necessary for the elimination of phenols and COD [60]. Mean particle-size measurements (presented in Figure 3) have been found to be constant at pH 7.3 increase to 2-4 µm when dispersion reaches pH2pc. In contrast, these variations in particle size could be an advantage for separating the catalyst from water (by sedimentation and/or filtration) at completion of photocatalytic treatments [58].

The pH of an aqueous solution significantly affects all metal oxide semiconductors, including the surface charge on the semiconductor particles, the size of the aggregates formed and the energies of the conduction and valence bands. The adsorption of the contaminants and thus the rates of degradation will be maximum near the zero point charge of the catalyst. The pH value of zero point charge for P25 has been measured as 6.25 [59]. The pH of a solution is an important parameter in the photocatalytic degradation of organic compounds due to the fact that pH influences the surface change of the semiconductor, the photoredox process. The decolourization rates under UV/H2O2 decreased with increasing pH [60, 61]. In alkaline condition, H2O2 will decompose into water and oxygen rather than hydroxyl radicals [61, 62]. This causes the lower decolourization rates of azo dyes at higher pH values because the concentration of OH− is reduced under these conditions. The decolourization rate was increasingly less effective at pH values higher than 8. While acidic conditions achieve a more effective decolourization, the effect of pH values in the range of 8 to 11 is still relatively limited, but the reaction rate and efficiency is certainly dramatically reduced at a pH of 12 [63]. The interfacial energetic at acidic and alkaline pH were also compared Figure 4.

![Figure 2. Degradation of a model contaminant (2-amino-2-phenyl-propionic acid, C0=500 mg/L) dissolved in water by photo-Fenton at Fe=20 mg/L [38]](image1)

![Figure 3. Mean particle size of TiO2 (P-25) suspended in water versus pH. [TiO2]=0.2 g/L [58]](image2)
4.2 Effect of light intensity and wavelength

Considering the unidirectional solar irradiation, the collection of radiation in solar reactors is carried out in two ways [65]. Use of a fixed reactor where a large surface of the solution or suspension is exposed to the sun: trickling on a flat plate supporting a catalyst mesh, flowing through pipes, or through a flat fixed-bed [67], or exposure within a tank such as those designed for water stations, which can be equipped with impellers designed to ensure a good mixing and aerating of the slurry. More elaborate systems (Fresnel lenses, holographic collector) can be used on a reactor of small dimension. When using a focusing system, the volume of fluid is reduced, this makes it easier to build. It is also a necessity as the whole system (collector + reactor) must be placed on a motorised support so as to track the sun. However, it leads to a high irradiation flux, which may reduce the quantum yield of degradation. In addition, depending on the weather, an important fraction of the sunlight can be diffuse instead of direct, which reduces the efficiency of the focusing system [68].

Some studies have also reported increased efficiency with UV-C radiation than UV-A for the degradation of certain organic materials [69, 70]. Direct photolysis and the higher probability of trapping of electron-hole pairs with shorter wavelength excitation were thought to be the possible reasons for such an effect. It is estimated that only 5% of the incident solar irradiation is of use for the TiO$_2$ band gap photocatalytic reaction. This significantly limits its practical application. Therefore, modification of TiO$_2$ photocatalyst to enhance light absorption and photocatalytic activity under visible light irradiation is the subject of recent research [71]. One such parameter is the effect of ultraviolet light intensity on the observed rate of pollutant destruction.

At low light intensity and correspondingly low carrier concentrations, the rate of oxidation of a particular compound is proportional to light intensity, while at higher light intensity the rate is dominated by second-order charge carrier recombination and has a square-root dependence on light intensity [29, 72-
The transition from one regime to the other depends on the photocatalyst material, but is typically above 1 sun equivalent \((7 \times 10^{-5} \text{ Einstein's m}^{-2} \text{ s}^{-1}) \). This transition depends on the (immobilized) catalyst configuration and on the flow regime in the photoreactor, and varies with each application \[76\]. The optimal light power utilization corresponds to the domain where the destruction rate is proportional to light intensity.

Several studies in the literature deal with the optimal concentration of TiO\(_2\) slurries, with can from 0.01 to 2 g/L, almost all of them well known titanium Degussa P25, recognized as the most efficient from of titanium dioxide. Obviously the optimal catalyst concentration depends on a number of additional parameter, mainly on the design of the photoreaction and light intensity Table 2.

Table 2. Optimal concentration of TiO\(_2\) for disinfection under different experimental conditions

<table>
<thead>
<tr>
<th>Process description</th>
<th>Photocatalysis used</th>
<th>Source of light</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr (VI) reduction</td>
<td>TiO(_2) Degussa P-25</td>
<td>365 nm black blue fluorescent UV lamp</td>
<td>[77]</td>
</tr>
<tr>
<td>Cr (VI) reduction</td>
<td>TiO(_2) Degussa P-25</td>
<td>150 W Medium pressure mercury lamp</td>
<td>[78]</td>
</tr>
<tr>
<td>Photoreduction of Cu (II)</td>
<td>TiO(_2) Degussa p-25</td>
<td>Fluorescent black light bulbs</td>
<td>[79]</td>
</tr>
<tr>
<td>Microorganism inactivation</td>
<td>TiO(_2) Degussa 0.1 (g/l)</td>
<td>UV sunlight: 20 W/m2</td>
<td>[80]</td>
</tr>
<tr>
<td>aqueous organic contaminant</td>
<td>TiO(_2) Degussa 0.05 (g/l)</td>
<td>UV solar light collected by a CPC type collector: 30 W/m2</td>
<td>[81]</td>
</tr>
<tr>
<td>Microorganism inactivation</td>
<td>TiO(_2) Degussa 0.5 (g/l)</td>
<td>Lamp: 1000 W/m2 (0.5% UV-C, 7% UV-A,B)</td>
<td>[82]</td>
</tr>
<tr>
<td>Microorganism inactivation</td>
<td>TiO(_2) Degussa p-25 1.0 (g/l)</td>
<td>UV Solar Light: 35 W/m2</td>
<td>[83]</td>
</tr>
<tr>
<td>Microorganism inactivation</td>
<td>TiO(_2) Degussa p-25 1.0 (g/l)</td>
<td>Black light lamp: 45 W/m2</td>
<td>[84]</td>
</tr>
<tr>
<td>Microorganism inactivation</td>
<td>TiO(_2) Degussa p-25 1.0 (g/l)</td>
<td>UV lamp: 67.9 (\mu \text{E/s m}^2)</td>
<td>[85]</td>
</tr>
<tr>
<td>ZnO</td>
<td>TiO(_2) Degussa p-25</td>
<td>-</td>
<td>[86]</td>
</tr>
</tbody>
</table>

4.3 Effect of H\(_2\)O\(_2\) dosage

UV/H\(_2\)O\(_2\) process is efficient in mineralizing organic pollutants. A disadvantage of this process is that it cannot utilize solar light as the source of UV light due to the fact that the required UV energy for the photolysis of the oxidizer is not available in the solar spectrum \[87\]. Different concentrations of H\(_2\)O\(_2\) (100, to 3000mg/l) were added to study the effect of H\(_2\)O\(_2\) concentration on the decolourization rate. The removal rate increased with increasing initial concentration of H\(_2\)O\(_2\). However, as the initial concentration of H\(_2\)O\(_2\) reached a certain value, the increase in decomposition rate became less. The decolourization rate was slow at low H\(_2\)O\(_2\) concentration, as the formation of hydroxyl radicals was insufficient. At higher H\(_2\)O\(_2\) concentration, more OH\(^-\) was produced leading to a faster oxidation rate. However, these free radicals preferred to react with the excess of H\(_2\)O\(_2\) rather than with the dye \[88, 89\]. Hydroperoxyl radicals (HO\(_2\)) equation (3, 4, 5) as the competitive reaction product are much less reactive than OH\(^-\) and do not seem to contribute to the decolourization of RR195A.

\[
\text{H}_2\text{O}_2 \rightarrow 2	ext{HO}^-. \quad (3)
\]

\[
\text{H}_2\text{O}_2 + \text{HO}^- \rightarrow \text{H}_2\text{O}_2 + \text{HO}_2^- \quad (4)
\]

\[
\text{HO}_2^- + \text{HO}^- \rightarrow \text{H}_2\text{O} + \text{O}_2 \quad (5)
\]

H\(_2\)O\(_2\) with the initial concentration of 300 to 900 mg/L is suitable for the decolourization of RR195A using UV/H\(_2\)O\(_2\) system as it gave a high decolourization rate. By adding 300 to 900 mg H\(_2\)O\(_2\)/L, the
decolourization was about 99-100% at 30 minutes of irradiation. The most favorable initial H$_2$O$_2$ concentration that was observed for the optimum decolourization of RR195A was 300 mg H$_2$O$_2$/L.

4.4 Effect of photo-fenton’s dosage

The presence of oxalate in equation (6) the Fe$^{3+}$/H$_2$O$_2$ system leads to an additional improvement of the photocatalytic efficiency [90]. Although it is well known for some time that Fenton reagent, a mixture of Fe$^{2+}$ salts with equation (7) hydrogen peroxide (H$_2$O$_2$), can easily oxidize organic compounds, it has been applied for water and soil treatment only during the last years [91-93]. The addition of other powerful oxidizing species, such as equations (8) and (9) H$_2$O$_2$ or sodium peroxydisulfate (Na$_2$S$_2$O$_8$) to TiO$_2$ suspensions, is a well-known procedure and in many cases lead to an increase in the rate of photo-oxidation [94-96].

\[
\begin{align*}
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} \cdot \text{OH} + \text{OH}^- \\
\text{Fe}^{3+} + \text{H}_2\text{O}_2 + \text{hv} & \rightarrow \text{Fe}^{2+} \cdot \text{Fe}^{2+} + \text{H} + \text{OH}^- \\
\text{H}_2\text{O}_2 + \text{O}_2^- & \rightarrow \text{OH}^- + \text{OH}^- + \text{O}_2 \\
\text{S}_2\text{O}_8^{2-} + \text{e}^- & \rightarrow \text{SO}_4^{2-} + \text{S}_4
\end{align*}
\]

The investigation on COD removal from oil recovery wastewater using fenton process, [97] reported that 86% reduction of COD was achieved for H$_2$O$_2$ to Fe$^{2+}$ mass ratio equal to 8.7 (w/w).

5. Economic analysis of solar photocatalysis system

Although the process of solar detoxification was very effective, the economic viability is not yet favorable for some application [98, 99]. The cost of wastewater treatment using solar detoxification systems depends on several parameters, i.e. rate constant, reactor type, catalyst and pre & post–treatment costs [100]. The authors reported an economic analysis of this technology for future application not only to solar photocatalytic disinfection, but also to decontamination of organic pollutants [38].

5.1 Energy consumption

AOPs based on artificial light may be associated with increased operating cost, a major fraction of which is related to energy consumption see equation (10). J.R. Bolton et al. [101] introduced the concept of specific electric energy consumption per unit mass of pollutant (e.g. COD) degradation (E_{EM}):

\[
E_{EM} = \frac{P \cdot t}{V (COD_0 - COD)}
\]

where V is the effluent Volume in liters in liters, t is the treatment time in hours, P is the lamp power in kW, COD_0 and COD is the concentration in g/l before treatment and after treatment time t, respectively.

6. Conclusion

To the summarize this review, the following conclusions can be made:
(i) This technique can be used effectively for the purification and disinfection of municipal wastewater.
(ii) Various designs of photocatalytic reactors, using both solar and artificial light, have been proposed. The solar–based reactors should be chosen according to the climatic conditions of the location and economic feasibility of the reactor.
(iii) The photo-Fenton experiments were considerably faster than those with TiO$_2$, but a detailed experimental analysis has to be made in order to arrive at a conclusion concerning the most appropriate method for application.

The use of solar light, combined with the simple technology required for this method, can offer economically reasonable and practical solutions to the processing of municipal water were solar intensity is easily available.
Acknowledgment
The author would like to thank School of Energy and Environmental Studies, Devi Ahilya University, Indore, M. P., India, is gratefully acknowledged.

References

Chandan Singh had completed M.Phil. (Energy and Environment) from the Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India, in the year 2007-2008 and his M.Sc. (Environmental Science) from the Jiwaji University Gwalior, Madhya Pradesh, India in the year 2005-2007. He is pursuing Ph.D. at the School of Energy and Environmental Studies Department from Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India. His research interests in the areas of Energy and Environment in Solar Detoxification. He has published research papers and review papers in various national and international journals and conferences.

E-mail address: csingh07_sees@yahoo.com

Rubina Chaudhary who did her Ph.D. in Environmental Science in 1993 from Aligarh Muslim University, Aligarh (INDIA). Presently, she is working as Reader in School Of Energy and Environmental Studies, Devi Ahilya University, Indore (INDIA). She has published over 38 research papers in reputed national and international journals and conferences. Her area of research is Hazardous Waste Management, Solidification/Stabilization, Solar Detoxification, Wastewater Treatment Technology etc. Dr. Rubina Chaudhary is Life Member of Indian Water Works Association (IWWA), member faculty of Engineering Sciences, Devi Ahilya University, Indore (2001-Till date) and Member, Academic Council, DAVV, Indore.

E-mail address: rubina_chaudhary@yahoo.com. Tel. 91 731 2460309, Fax: 91 731 2467378
Rajendra Singh Thakur had completed M. Phil (Energy and Environment) from the Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India, in the year 2005-2006 and his M.Sc. (Environmental Sciences) from the School of Chemical Sciences, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India, in the year 2003-2005. He is pursuing Ph.D. from the School of Energy and Environmental Studies Department from Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India. His research interests in the areas of Energy and Environment in Solar Detoxification, Water and Wastewater Treatment. He has published research papers and review papers in various national and international journals and conferences. E-mail address: rsthakur.sees@gmail.com.