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Abstract 
The optimal design and operation of energy systems are critical tasks to sustain economic growth and 
reduce environmental impacts. In this context, this paper presents the mathematical optimization and 
exergoeconomic improvement of an energy system modeled in a professional thermodynamic process 
simulator using the direct search method of Powell and an evolutionary stochastic method of the genetic 
type. In the mathematical optimization approach, as usual, the minimum system total cost is sought by 
simultaneous manipulation of the entire set of decision variables. At times, the global minimum is not 
exactly reached. On the other hand, the exergoeconomic improvement methodology determines, based 
on the exergetic and economic analyses of the system at each iteration, a subset of most significant 
decision variables which should be modified for each component, and applies an optimization algorithm 
to these variables only. In the improvement process an appreciable reduction, not strict minimization, of 
the system total cost is sought. The energy system analyzed is a 24-component cogeneration plant, 
denoted CP-24, which is representative of complex industrial installations. As opposed to a conventional 
optimization approach, the integrated optimization with a professional process simulator eliminates the 
necessity to implement explicitly the constraints associated with the physical and thermodynamic models 
of the system. Therefore, the integrated strategy can tackle large systems, and ought to be more easily 
applied by practicing energy engineers. The results obtained permit, first, to compare the performance of 
mathematical optimization algorithms belonging to different classes, and, second, to evaluate the 
effectiveness of the iterative exergoeconomic improvement methodology working with these algorithms. 
Copyright © 2011 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Throughout the world, the optimal design and operation of energy systems are critical objectives to 
sustain economic growth and reduce environmental impacts. Therefore, efficient optimization and 
improvement methodologies ought to be available and easily applicable by practicing energy engineers. 
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In this context, a considerable amount of recent research effort has been expended (e.g., [1-9]). The 
present work contributes with a pointful appraisal of the mathematical optimization and exergoeconomic 
improvement of energy systems modeled in a professional thermodynamic process simulator. 
First, for mathematical optimization, the direct-search method of Powell [10] and a genetic algorithm 
[11] are selected, and their performances are evaluated. Both methods do not require the calculation of 
derivatives of the objective function, thus avoiding differentiability issues, and streamlining the 
computational implementation of the optimization problem solution when a process simulator is used. It 
is known that the method of Powell can be made efficient [10, 12], and, among the evolutionary 
stochastic methods, genetic algorithms have demonstrated robustness when applied to diverse 
optimization problems in engineering [12, 13]. In the mathematical optimization approach, as usual, the 
minimum system total cost is sought by simultaneous manipulation of the entire set of decision variables. 
At times, the global minimum may not be exactly reached [14]. 
Second, the performance of an iterative exergoeconomic improvement methodology using these same 
optimization algorithms is here evaluated. The methodology, originally proposed by Vieira et al. [15], 
aims to obtain an appreciable reduction, not strict minimization, of the system total cost, and has been 
recently termed the EIS method [16, 17]. The EIS method establishes, based on the exergoeconomic 
analysis of the system at each iteration and on several qualitative and quantitative objective criteria, a 
hierarchical classification of the system components, and the associated subsets of most significant 
decision variables. For each component deemed relevant, an optimization algorithm is then applied to the 
respective reduced-set decision variables only. The iterations proceed until a user-prescribed stopping 
criterion is met for the reduction of the objective function. 
The energy system analyzed here is a 24-component cogeneration plant, denoted CP-24, which is 
representative of complex energy systems found in industry. The professional process simulator IPSEpro 
[18] has been selected to model the CP-24 system. As opposed to a conventional optimization approach, 
the integrated optimization with a process simulator eliminates the necessity to implement explicitly the 
constraints associated with the physical and thermodynamic models of the system. Therefore, the 
integrated strategy can effectively tackle large systems [16, 17, 19]. 
Several optimization and improvement exercises for the CP-24 system are carried out. The results 
obtained permit, first, to compare the performances of mathematical optimization algorithms belonging 
to different classes, and, second, to evaluate the effectiveness of the iterative exergoeconomic 
improvement methodology working with these algorithms. In addition, the new findings and results 
obtained here are compared with those presented by Vieira et al. [16, 19] for the same CP-24 system, 
where only the flexible polyhedron algorithm by Nelder and Mead [10] had been used. 
 
2. The cogeneration plant CP-24 
The 24-component cogeneration system, whose flow diagram is shown in Figure 1, includes two gas 
turbines (GT01, GT01a), one extraction steam turbine (ST01), one condensation steam turbine (ST02), 
two heat recovery steam generators (HRSG01, HRSG01a), two water heaters (Heater01, Heater01a), one 
deaerator, one condenser, one cooling tower, and various pumps (P01, P02, P02a, P03), mixers (M1, 
M2), splitters (S1, S2, S3, S4) and blockage valves (V1, V2, V3). The system possesses 52 mass streams, 
including plant inflows and outflows. The products of CP-24 are the electricity from the gas and steam 
turbines, the superheated process steam, and the process hot water. The fuel for the gas turbines is natural 
gas. The plant is considered complex, because it includes all the major components of a real energy 
system, and it requires O(103) variables for its simulation. It is remarked that this cogeneration system is 
the same as that used by Vieira et al. [19], such that, for ease of comparison of results, the notation 
adopted in that reference is also employed here. The plant is modeled with the IPSEpro process 
simulation software. 
With respect to the mass flows in the CP-24, the expansion of combustion gases in the gas turbines 
generates part of the produced electricity. In the sequence, heat is transferred from these gases to the 
water to produce superheated steam in the two HRSGs. The two steam flows are mixed, and the resulting 
stream follows to the extraction turbine. After partial expansion in this turbine, a fraction of the steam is 
extracted for use in the process. The condensate of the process steam returns to the deaerator. The 
remnant steam further expands in the condensation steam turbine, producing more electricity. A 
condenser and a cooling tower are responsible for steam condensation after expansion in the turbine. The 
condensate then follows to the deaerator. The combustion gases, after leaving the HRSGs, are further 
used to produce hot water to the process. Finally, they are discharged to the atmosphere. 
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Figure 1. Schematic flow diagram of the cogeneration plant CP-24 
 
3. Problem formulation 
Three optimization problems with 8, 9, and 11 decision variables are formulated and solved in [16,19] 
for the CP-24 cogeneration plant, respectively denoted by OP8, OP9, and OP11. For all problems, the 
objective function OF is the same, and the process steam and process hot water demands are assumed 
constant. Here, the larger problem OP11 is considered for both mathematical optimization and 
exergoeconomic improvement. Table 1 shows the descriptions of the decision variables, the 
denominations used, and their minimum and maximum allowable values. In problem OP11, in addition 
to the evident consideration of the turbines and HRSGs, some decision variables associated with the 
condenser and cooling tower are weighed in the investigation. 
 

Table 1. Decision variables for the optimization problem OP11 of system CP-24 
 

Variable Symbol Lower limit Upper limit 
Power (ISO) of gas turbine GT01 (kW) GT01.kW 40000 100000 
Power (ISO) of gas turbine GT01a (kW) GT01a.kW 40000 100000 
Load of gas turbine GT01 GT01.f 0.50 1.00 
Load of gas turbine GT01a GT01a.f 0.50 1.00 
Steam pressure at exit of mixer M1 (bar) S09.p 20.0 120.0 
Steam temperature at exit of HRSG01 (ºC) S08.t 350.0 600.0 
Steam temperature at exit of HRSG01a (ºC) S08a.t 350.0 600.0 
Steam pressure at extraction of ST01 (bar) S14.p 2.0 10.0 
Inlet condenser pressure (bar) S16.p 0.05 0.50 
Cooling tower range (ºC) Range 2.0 10.0 
Cooling tower approach (ºC) Approach 2.0 10.0 

 
The objective function to be minimized is the sum of the specific costs of the system products, which 
include the costs of capital investment, fuel, and operation and maintenance. The total system product is 
the sum of the exergies of the generated electrical power, superheated process steam, and process hot 
water. The objective function OF in US$ per unit exergy may be expressed by [16, 19] 
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where c means specific cost, Z&  denotes cost rate, E&  denotes rate of exergy transfer, subscripts F and P 
indicate system fuel and system product, respectively, NK is the number of system components, and NP 
and NF are the numbers of system products and fuels, respectively. The sum of the capital investment 
and the operation and maintenance cost rates for the NK components of the plant is given by [16, 19,  20] 
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In Eq. (2), TCIk = β PECk is the total capital investment for component k, k = 1,…NK, PECk is the 
purchased-equipment cost of component k, CRF = i(1 + i)l/((1 + i)l – 1) is the capital recovery factor, τ is 
the number of hours the plant operates in one year, γ is the maintenance factor, here assumed constant, 
and l and i are, respectively, the useful system life and interest rate. The constant factor β purports to 
account for all direct and indirect costs of the system [20]. The values of the economic parameters used 
in all calculations are [16, 19]: β = 2, i = 12.7%, l = 10 years, τ = 8000 hours, and γ = 0.06. The equations 
for PECk, k = 1,…NK, are found in [19]. 
The mass and energy balances for the plant are equality constraints of the optimization problem. In 
addition, the fixed process steam and process hot water demands are also equality constraints [19]. The 
inequality constraints are represented by the allowable ranges of variation of the decision variables, 
presented in Table 1. 
 
4. Problem solution integrated with a process simulator 
The formulated optimization problem is solved by integrating the optimization and improvement routines 
with the modular process simulator IPSEpro [15, 19]. Integration requires a two-way communication 
interface, provided by the MS-Excel supplement PSExcel [18]. The optimization and improvement 
routines are written in the VBA (Visual Basic for Applications) language, run without user intervention, 
and perform the following tasks: (i) send plant data to the simulator; (ii) issue the command to run a 
simulation (‘RunCalculation’); (iii) receive new plant data from the simulator; (iv) effect calculations of 
the optimization (sections 5 and 6) or improvement (section 7) algorithm; (v) return to task (i) while a 
stopping criterion is not met. 
The thermodynamic calculations of the simulator impose the equality constraints associated with the 
mass and energy balances for the plant CP-24. As commonly employed in direct search optimization 
algorithms [10, 19, 21], the inequality constraints are incorporated through penalties applied to the 
objective function. Here, a penalty increases the objective function OF by a relatively large amount, 
which is proportional to the magnitude of the difference between the current (not admissible) value of the 
constrained decision variable and the respective limiting value. Furthermore, a penalty is applied to the 
objective function, whenever thermodynamic infeasibility is obtained in the process simulator along the 
search process. For the evolutionary algorithm, the computational implementation does not already allow 
tentative points (individuals) with decision variables (genes) outside the limits to be part of the 
population considered by the algorithm. 
An optimization exercise thus consists of the application of the integrated optimization or improvement 
approach to the CP-24 simulation model starting at an initial design point, with ensuing execution of the 
algorithm until a stopping criterion is satisfied, so that a final design point is obtained. The initial point is 
generically denoted by X0 = (x1,0, x2,0,…, xn,0), and possesses an associated value of the objective 
function, OF0. The point obtained at the end of the procedure, Xf = (x1,f, x2,f,…, xn,f), contains the final 
values of the decision variables, and is associated with the final value OFf; of course, OFf is improved 
relative to OF0. Indeed, one expects that Xf is close to, if not coincident with, the system global optimum 
point X*, associated with OF*. 
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5. The method of Powell 
The direct-search method of Powell [10] is applicable to the optimization of functions of several 
variables for which there are no constraints. When constraints are imposed, as noted in the previous 
section, one may couple the algorithm to a penalty method. Powell’s method locates the minimum of a 
multivariable function by successive one-dimensional searches along a set of conjugate directions 
generated by the algorithm itself. Therefore, at each stage, it is necessary to apply a one-dimensional 
search method, i.e., an algorithm for extremization of a function of one variable only. 
In the present work, the term Powell’s method actually refers to a combination of two algorithms [10, 
22]: the improved, or modified, n-D Powell’s method, and the efficient combined DSC-Powell 1-D 
search algorithm. The n-D and 1-D algorithms are schematically described in Figures 2 and 3, 
respectively. Powell’s method has been implemented in VBA, integrated with the IPSEpro simulator. 
Validation of the implementation has been carried out in Ref. [22] through application to standard 
functions, and also through comparison to the results of Refs. [15, 23, 24] for the benchmark CGAM 
system [20, 25]. As will be verified in the results section, the performance of Powell’s method is 
significantly better than that of the flexible polyhedron method by Nelder and Mead [10, 16, 19]. 
 

 
 

Figure 2. Algorithm for the improved n-D Powell’s method to minimize f(x) [10, 22] 
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Figure 3. Algorithm for the combined DSC-Powell 1-D search to minimize g(x) [10, 22] 
 
6. The genetic algorithm 
Genetic algorithms [11, 13] are stochastic evolutionary optimization techniques, based heuristically on 
the biological principle of natural selection, which warrants survival of the fittest individuals in a given 
population. Usually, the aptitude of an individual is represented quantitatively by the associated value of 
the objective function, such that at the end of the optimization process the fittest individual constitutes 
the problem optimal solution. From an initial random population, natural selection works its way thru 
generations, modifying the individuals by means of crossover and/or mutation, leading to new 
populations. Genetic algorithms are known to be robust, in that they tend to find the global optimum, 
albeit at the cost of intensive computational time. 
The steps of the genetic algorithm are illustrated in Figure 4 [22, 23]. In the present problem, an 
individual contains a chromosome with 11 genes, 1 for each decision variable, plus an extra one for OF. 
Due to the nature and variation ranges of the decision variables, here the chromosomes have been coded 
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with real numbers. Accordingly, the classical genetic operators of crossover and mutation are also 
implemented with real coding. Selection has been effected by tournament. To improve the performance 
of the algorithm, and to avoid stochastic deviations due to pseudo-random number generation, the elitism 
operator has also been used, which guarantees that the fittest individual in a given generation will be 
present in the following generation. 
The performance of a genetic algorithm with respect to convergence to the global optimum point in the 
search space depends on the values assigned to its various control (adjustable) parameters. The size of 
the population (i.e., number of individuals), Nind, and the probability of occurrence of a mutation, Pm, are 
two such parameters associated with the diversity of the population. The greater the diversity, the greater 
are the chances that some individual will be close to the global optimum of the objective function. The 
population diversity is maximum at the beginning of the genetic algorithm search process, and decreases 
along the Ngen generations. The probability of occurrence of a crossover, Pc, and the method of selection, 
on the other hand, determine the selection pressure of the genetic algorithm. The selection pressure is 
responsible for guiding the search to promising regions of the space. The larger the selection pressure, 
the larger is the speed of convergence to such regions. Because of the somewhat competing tendencies 
just described, a parametric study has been carried out [22, 23], to judiciously adjust the values of all the 
control parameters to be used with the genetic algorithm in the optimization and exergoeconomic 
improvement processes of the CP-24 system. The selected values of the control parameters are shown in 
Table 2. Because the improvement approach (section 7) works with reduced sets of decision variables, 
the number of generations Ngen can be much reduced relative to that for the optimization process. 
 

 
 

Figure 4. Steps of the genetic algorithm [22, 23] 
 

Table 2. Values of the genetic algorithm parameters for optimization and improvement of plant CP-24 
 

Parameter Value for Optimization Value for Improvement 

Nind 80 50 

Ngen 50 3 

Pc (%) 65 65 

Pm (%) 5 5 

 
7. The exergoeconomic methodology 
The iterative exergoeconomic improvement methodology, or EIS approach, encompasses qualitative and 
quantitative criteria to hierarchically classify the thermal system components, and to select subgroups of 
decision variables to be modified for the components in the course of the procedure. The EIS approach 
requires no user intervention, and consists of six steps, described in detail in Refs. [15, 16]: (i) 
exergoeconomic analysis of the thermal system; (ii) analysis of the influence of the decision variables on 
the system exergetic efficiency and on the system total cost; (iii) ranking of system components into 
main, secondary, and remainder; (iv) identification of the predominant cost (exergy destruction or 
investment) for main and secondary components; (v) selection of subgroups of decision variables; (vi) 
mathematical optimization of main and secondary components. 
A mathematical method modifies all n decision variables (x1, x2,…, xn) simultaneously, to obtain the 
optimal values (x1*, x2*,…, xn*). In contrast, in the EIS approach, an exergoeconomic analysis of the 
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system at the beginning of each iteration is performed. The analysis provides information to 
hierarchically classify the components as main, secondary, and remainder, and to define main decision 
variables subgroups associated with the main and secondary components. The subgroups may have 
common decision variables, and their sizes may vary. Appropriate values for the parameters in the first 
step are chosen, so that the size of a subgroup of decision variables is always less than n. After the 
assembly of the subgroups, a mathematical optimization method is applied, first to those associated with 
the main components, and then to those associated with the secondary components. This sequence is 
repeated until no further improvement of the objective function is obtained, to within a user-prescribed 
tolerance. 
In contrast to the conventional mathematical strategy, because EIS performs a preceding exergoeconomic 
analysis of the system, it will exclude some decision variables from the improvement process, when they 
no longer affect the value of the objective function. In fact, the EIS approach always selects the more 
important decision variables inside the improvement process, and these change as the system approaches 
the optimum. Two distinct alternatives are developed for the choice of main decision variables for each 
component. Alternative 1 uses modified structural bond coefficients, based on the cost of exergy 
destruction and the total cost (investment plus exergy destruction costs) of component k, k = 1,…,NK. 
Alternative 2 is based on the relative deviations between the actual and the optimal values of exergetic 
efficiency and relative cost difference for each main and secondary component. In principle, any 
mathematical optimization algorithm can be chosen to perform the optimizations along the iterations of 
the EIS approach. 
In practice, the integrated EIS procedure is coded in the VBA language. Excel macros are used to control 
data exchange between the simulator and the VBA routine. The simulator is called by the VBA routine 
each time a decision variable is modified, to compute all mass, energy, and exergy flow rates of the 
system streams. To prevent execution failure due to errors caused by infeasible thermodynamic data 
selected in the VBA routine, a penalty is applied whenever the simulator returns an error code. Total 
computational time for any of the integrated approaches ends up proportional to the number of calls to 
the simulator, NC, which is equal to the number of evaluations of the objective function. It is remarked 
that no specific efforts have been expended in this study to accelerate the EIS approach, either by 
optimizing user parameters values, or by employing advanced exergetic analysis [4]. 
 
8. Results and discussion 
In this section the results of the exercises to optimize and improve the cogeneration plant CP-24 are 
presented and analyzed. In one exercise, a solution of the optimization or improvement problem is 
obtained starting from one specific set of initial values of the decision variables, with one chosen 
mathematical technique, and one chosen Alternative (1 or 2) for the EIS approach. Two initial points 
have been selected, X0,1 and X0,2, corresponding to Case 1 and Case 2, respectively, as shown in Table 3. 
Also shown in Table 3 are the initial values of the objective function for each case. One notes that Case 2 
corresponds to a higher initial objective function value. By testing with different initial points, first, the 
likelihood of reaching the global minimum is increased [14], and, second, the robustness of the employed 
procedure is evaluated. 
 
8.1 Results obtained with the method of Powell 
Table 4 presents the results obtained when Powell’s method is employed in the mathematical 
optimization strategy and in Alternatives 1 and 2 of the exergoeconomic improvement approach. From 
the results in Table 4 it is observed, first, that the three schemes are effective and robust, because plant 
costs at the final points are significantly reduced relative to those at the respective initial points (about 
10% reduction in Case 1, 15% in Case 2). With regard to the influence of the initial set of values of the 
decision variables, one observes for each method that the results for Cases 1 and 2 are essentially 
equivalent in terms of the final value of the objective function. However, the number of evaluations of 
the objective function, NC (equal to the number of calls to the simulator), for EIS’ Alternatives 1 and 2 
and for the mathematical optimization is, respectively, 29%, 82%, and 15% greater for Case 2 than for 
Case 1. This verification is not surprising, since for Case 2 the initial value of OF is greater (by about 
7%) than that for Case 1. 
On further analysis of the results in Table 4, one notes that, when Powell’s method is applied to the CP-
24 problems, the mathematical optimization has an overall better performance than the exergoeconomic 
improvement. The best value for OF and second to best value for NC are, respectively, 43.01 US$/MWh 
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and 475, obtained with the mathematical optimization applied to Case 1. With the EIS approach, the final 
values of the objective function are only about 4% higher. Alternative 2 leads to slightly higher objective 
function values than Alternative 1, but at significantly lower computational costs. For Case 1, the value 
of OF is only 0.1% higher for Alternative 2, however, NC is 37% smaller. 
Comparing now the final values of the decision variables for the mathematical optimization with those 
for the EIS method, an overall satisfactory agreement is obtained (see also section 8.3). It is possible to 
observe larger differences for the extraction pressure of the steam turbine (S14.p variable). In the EIS 
method, this variable is not modified (see Tables 3 and 4), because the exergoeconomic analyses in all 
iterations indicate that this variable has a minor effect on the reduction of the objective function. 
 

Table 3. Initial values of the decision variables and objective function for Cases 1 and 2 
 

Variable symbol Case 1  Initial point X0,1 Case 2  Initial point X0,2 
GT01.kW (kW) 52800 70000 
GT01a.kW (kW) 52800 70000 
GT01.f 0.90 0.90 
GT01a.f 0.90 0.90 

S09.p (bar) 79.9 59.9 

S14.p (bar) 3.0 2.0 

S08.t (oC) 500.0 400.0 

S08a.t (oC) 500.0 400.0 

S16.p (bar) 0.08 0.08 

Range (oC) 5.5 5.5 

Approach (oC) 5.0 5.0 
 
OF 
(US$/MWh) 

OF0,1 
49.42 

OF0,2 
52.97 

 
 

Table 4. Results obtained with the method of Powell 
 

Case 1 Case 2 
Decision variable EIS 

Alternative 1 
EIS 
Alternative 2 

Mathematical 
optimization 

EIS 
Alternative 1 

EIS 
Alternative 2 

Mathematical 
optimization

GT01.kW (kW) 40000 40000 40008 40000 40001 40094 
GT01a.kW (kW) 40000 40200 40000 40001 40000 40094 

GT01.f 0.75 0.75 0.74 0.75 0.75 0.74 

GT01a.f 0.75 0.75 0.75 0.75 0.75 0.79 
S09.p (bar) 117.7 117.7 119.8 116.0 119.5 119.5 

S14.p (bar) 3.0 3.0 10.0 2.0 2.0 10.0 
S08.t (oC) 500.0 500.0 519.0 518.8 518.8 520.8 
S08a.t (oC) 500.0 500.0 519.0 518.8 514.0 518.8 
S16.p (bar) 0.08 0.08 0.08 0.08 0.08 0.08 
Range (oC) 9.3 9.1 9.9 9.2 9.0 10.0 
Approach (oC) 3.4 3.6 3.1 3.4 3.6 2.6 
 
OF (US$/MWh) 44.64 44.68 43.01 44.71 44.83 43.16 
NC 723 455 475 930 828 547 
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8.2 Results obtained with the genetic algorithm 
Table 5 presents the results obtained when the genetic algorithm is employed in the mathematical 
optimization strategy and in Alternatives 1 and 2 of the exergoeconomic improvement approach. One 
observes from Table 5 that the three schemes are robust, and that the mathematical optimization, again, 
leads to lower values of the objective function than does the exergoeconomic improvement. However, 
the relative difference between the smallest value of OF obtained with the EIS approach (Alternative 1, 
Case 2) and that obtained with the mathematical optimization is only 3.2%. Furthermore, among the 
schemes, Alternative 2 requires a much lower number of evaluations of the objective function. In fact for 
Alternative 2, respectively for Cases 1 and 2, NC is 33% and 51% smaller than the values for the 
mathematical optimization. 
 

Table 5. Results obtained with the genetic algorithm 
 

Case 1 Case 2 Decision 
variable EIS 

Alternative 1 
EIS 
Alternative 2 

Mathematical 
optimization 

EIS 
Alternative 1 

EIS 
Alternative 2 

Mathematical 
optimization 

GT01.kW 
(kW) 40601 40601 41407 41097 45493 41026 

GT01a.kW 
(kW) 41097 41097 42162 41097 41097 42162 

GT01.f 0.75 0.75 0.53 0.74 0.76 0.53 

GT01a.f 0.75 0.74 0.71 0.75 0.76 0.64 
S09.p (bar) 110.5 105.9 108.2 118.8 118.8 109.3 

S14.p (bar) 3.0 3.0 9.4 2.0 2.0 9.1 
S08.t (oC) 500.0 500.0 519.9 515.4 516.2 505.3 
S08a.t (oC) 500.0 500.0 522.2 502.4 516.3 522.2 
S16.p (bar) 0.08 0.08 0.08 0.08 0.08 0.08 
Range (oC) 9.1 9.1 9.3 9.5 9.1 9.8 
Approach 
(oC) 5.0 2.7 3.9 3.1 5.0 2.6 
 
OF 
(US$/MWh) 44.98 44.98 43.46 44.85 45.29 43.52 

NC 5400 2700 4000 6750 1950 4000 
 
As regards the final values of the decision variables, one observes the same tendencies with respect to the 
initial values as the ones verified with Powell’s method (see also section 8.3). However, larger 
discrepancies among the variables are obtained with the use of the genetic algorithm applied to the CP-
24 problems. Again, the larger differences occur in the extraction pressure of the steam turbine, because 
this variable is not modified in the EIS approach. In spite of all discrepancies, the final values of the 
objective function are essentially equivalent for engineering purposes (less than 5% spread). This reality 
is further evidence of the difficulty to achieve a unique set of final values of the decision variables and 
objective function in the optimization or improvement of complex thermal systems [16, 19]. 
 
8.3 Comparative analysis of results 
Tables 6 and 7 show, respectively for Cases 1 and 2 of the CP-24 problems, the present results obtained 
using Powell’s method and the genetic algorithm together with the results obtained by Vieira et al. [16, 
19] using the flexible polyhedron method by Nelder and Mead. A global analysis of Tables 6 and 7 
reveals an important outcome: the method of Powell systematically leads to the smallest values of the 
objective function and of the number of simulator calls for all the investigated CP-24 scenarios. 
Regarding the integrated mathematical optimization strategy, the number of evaluations of the objective 
function for the flexible polyhedron method is 3.6 to 8.5 times greater than that for the method of Powell. 
Also, for the genetic algorithm, NC is about 8 times greater than that for the method of Powell. While 
Powell’s scheme and the genetic algorithm essentially agree in the final values of OF, the average 7% 
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difference for the flexible polyhedron method appears consistent with the more significant discrepancies 
among the corresponding final values of the decision variables. 
With the EIS approach, the final values obtained for OF are approximately equal, with discrepancies 
below 1.5%. Across all optimization techniques, relatively low discrepancies are also obtained among 
the final values of the decision variables. The method of Powell is 2 to 3 times faster than the flexible 
polyhedron method, and 6 to 7 times faster than the genetic algorithm. While Alternative 1 leads to 
smaller values of OF for all methods (except in Case 2, by a slim margin, with the flexible polyhedron 
method), Alternative 2 is consistently faster; in fact, the overall fastest performance occurs with Powell’s 
method used in Alternative 2 applied to Case 1. 
Despite some discrepancies verified in the final values of the decision variables, all schemes perform 
robustly: in all cases, they considerably reduce the value of the objective function, and they lead to the 
same global behavior of the plant CP-24. In fact, the gas turbines sizes and loads are reduced, while the 
operating pressures and temperatures of the HRSGs are increased [16, 19]. The condenser pressure is 
seen to be unimportant. The cooling tower range is increased, but the approach is reduced. Finally, as 
already pointed out, distinct treatments are given to the extraction pressure of the steam turbine by the 
mathematical and EIS approaches. 
It is interesting to note that, contrary to what is observed with the flexible polyhedron method, the 
mathematical optimization with either the Powell’s method or the genetic algorithm attains a lower value 
of the objective function, and sometimes at lower computational costs, compared to Alternatives 1 and 2 
of the EIS approach. The differences encountered may be attributed in part to the fact that the 
improvement process does not modify appreciably some decision variables, because the associated 
exergoeconomic analyses indicate that they will have relatively little impact on the objective function. 
This is in accordance with the EIS philosophy, which does not aspire to obtain the mathematical 
optimum of the system. It must also be noted that the values of the parameters used in the improvement 
exercises are the same as those used originally by Vieira et al. [16, 19] with the flexible polyhedron 
method. No attempt has been made in this study to accelerate the EIS’ performance, either by optimizing 
parameters values, or by employing advanced exergetic analysis. 
 

Table 6. Results obtained in this work and in Refs. [16,19] for Case 1 of the optimization and 
improvement problems for system CP-24 

 
Case 1 

EIS, Alternative 1 EIS, Alternative 2 Mathematical optimization Decision 
variable Ref. [16] Powell Genetic Ref. [16] Powell Genetic Ref. [19] Powell Genetic 
GT01.kW 
(kW) 40001 40000 40601 40001 40000 40601 40001 40008 41407 

GT01a.kW 
(kW) 40001 40000 41097 40001 40200 41097 40157 40000 42162 

GT01.f 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.74 0.53 
GT01a.f 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.71 
S09.p (bar) 120.0 117.7 110.5 120.0 117.7 105.9 76.3 119.8 108.2 
S14.p (bar) 3.0 3.0 3.0 3.0 3.0 3.0 6.3 10.0 9.4 
S08.t (oC) 500.0 500.0 500.0 500.0 500.0 500.0 496.1 519.0 519.9 
S08a.t (oC) 500.0 500.0 500.0 500.0 500.0 500.0 505.9 519.0 522.2 
S16.p (bar) 0.08 0.08 0.08 0.08 0.08 0.08 0.17 0.08 0.08 
Range (oC) 7.7 9.3 9.1 8.9 9.1 9.1 6.1 9.9 9.3 
Approach  
(oC) 5.0 3.4 5.0 5.0 3.6 2.7 5.6 3.1 3.9 
 
OF 
(US$/MWh) 44.97 44.64 44.98 44.73 44.68 44.98 45.80 43.01 43.46 

NC 1796 723 5400 1241 455 2700 1700 475 4000 
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Table 7. Results obtained in this work and in Refs. [16, 19] for Case 2 of the optimization and 
improvement problems for system CP-24 

 
Case 2 

EIS, Alternative 1 EIS, Alternative 2 Mathematical optimization Decision 
variable Ref. [16] Powell Genetic Ref. [16] Powell Genetic Ref. [19] Powell Genetic 
GT01.kW 
(kW) 40001 40000 41097 40001 40001 45493 42261 40094 41026 

GT01a.kW 
(kW) 40001 40001 41097 40001 40000 41097 40337 40094 42162 

GT01.f 0.75 0.75 0.74 0.74 0.75  0.76 0.85 0.74 0.53 
GT01a.f 0.75 0.75 0.75 0.74 0.75 0.76 0.79 0.79 0.64 
S09.p (bar) 120.0 116.0 118.8 106.3 119.5 118.8 70.1 119.5 109.3 
S14.p (bar) 2.0 2.0 2.0 2.0 2.0 2.0 6.6 10.0 9.1 
S08.t (oC) 521.0 518.8 515.4 522.0 518.8 516.2 489.1 520.8 505.3 
S08a.t (oC) 502.6 518.8 502.4 521.5 514.0 516.3 475.6 518.8 522.2 
S16.p (bar) 0.08 0.08 0.08 0.08 0.08 0.08 0.21 0.08 0.08 
Range (oC) 9.1 9.2 9.5 9.2 9.0 9.1 7.5 10.0 9.8 
Approach 
(oC) 3.6 3.4 3.1 4.2 3.6 5.0 6.0 2.6 2.6 

 
OF 
(US$/MWh) 44.73 44.71 44.85 44.88 44.83 45.29 46.32 43.16 43.52 

NC 2985 930 6750 2365 828 1950 4654 547 4000 
 
9. Conclusions 
Integrated mathematical optimization and exergoeconomic improvement of a complex energy system 
modeled in a professional thermodynamic process simulator has been successfully carried out, using the 
direct search method of Powell and a genetic algorithm. In the optimization and improvement exercises, 
the method of Powell attained the best performance when compared to both the genetic algorithm and the 
flexible polyhedron method. Both the integrated tool and its evaluation are important, in view of the 
growing concern with the efficient design and operation of energy systems. Additionally, in the present 
study, Alternatives 1 and 2 of the EIS exergoeconomic improvement approach did not perform better 
than the mathematical optimization with Powell’s and genetic methods, as opposed to what was observed 
when the flexible polyhedron method had been used. Still, the EIS approach has performed both robustly 
and efficiently, and it should thus be useful in exergoeconomic applications by the energy community at 
large. As indications for future research, the EIS approach may be further improved by optimization of 
parameters values, and/or by employment of advanced exergetic analysis. 
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