Aims and Scope

The International Journal of Energy and Environment (IJEE) is the official journal of the International Energy and Environment Foundation providing an international forum for the fields of Energy and Environment. The journal aims to provide the most complete and reliable source of information on current developments in the field. The emphasis will be on publishing quality articles rapidly and making them freely available to researchers worldwide. The journal has a distinguished editorial board with extensive academic qualifications, ensuring that the journal will maintain high academic standards and has a broad international coverage. There are no page charges and all articles are indexed by the major indexing media therefore providing the maximum exposure to the articles. The scope of the journal includes the following:

**Energy**
- Fuel cells.
- Hydrogen energy.
- Solar energy conversion and photovoltaics.
- Wind energy.
- Hydro energy.
- Micro- and nano-energy systems and technologies.
- Biofuels and alternatives.
- Hybrid / integrated energy systems.
- Energy conversion, conservation and management.
- Energy efficient buildings.
- Energy storage.
- Energy and sustainable development.
- Advanced visualization techniques, virtual environments and prototyping.

**Environment**
- Energy and environmental impact.
- Assessment of risks from water, soil and air pollution; effective and viable remedies.
- Evaluation and management of environmental risk and safety.
- Environment and sustainable development.
- Environmental education and training.
- Analysis of contaminants.
- Contaminant source characterization, transport and deposition.
- Multi-media sampling / monitoring (air, soil, water, sediment).
- Quality assurance / control.
- Legislative issues and guidelines.
- Remediation.
- Climate change.

**A note to authors**

**Submission of articles**

Articles submitted to the Review should be original contributions and should not be under consideration for any other publication at the same time. The submitting author is responsible for obtaining agreement of all co-authors as well as any sponsors' required consent before submitting a paper. Responsibility for the content of a paper lays on the Authors and not on the Editors or the Publisher.

Formatting instructions can be found on author guidelines and must be strictly followed or else your paper will not be published. The paper template represents the basic guidelines and desired layout final manuscript of International Journal of Energy and Environment (IJEE). It’s compulsory to use the template for the preparation of your paper. Full instructions can be found on the web site ([http://www.IJEE.IEEFoundation.org](http://www.IJEE.IEEFoundation.org)).

**Your Submitted Article**
- Your article will be peer-reviewed and published very fast.
- Your biography will appear at the end of your article.
- Your article will be published free of charge. Free use of colour where this enhances the article.
- Your article can be read by potentially millions of readers, which is incomparable to publishing in a traditional subscription journal. All interested readers can read, download, and/or print your article at no cost!
- Your article will obtain more citations.
- Moreover, all articles are indexed by the major indexing media therefore providing the maximum exposure to the articles.
Stanislaw Szwaja  
Department of Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A.

David S-K. Ting  
Mechanical, Automotive & Materials Engineering, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.

G. N. Tiwari  
Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110 016, India.

Bor-Jang Tsai  
Department of Mechanical Engineering, Chung Hua University, No. 707, Sec. 2, Wu Fu Rd., Hsinchu 300, Taiwan.

Athanasios Tsolakis  
School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.

Per Tunestal  
Department of Energy Sciences, Lund University, SE-221 00 Lund, Sweden.

Aynur Ucar  
Department of Mechanical Engineering, Firat University, Elazig, Turkey.

Despina Vamvuka  
Department of Mineral Resources Engineering, Technical University of Crete, University Campus, Hania 73100, Crete, Greece.

Virendra Kumar Vijay  
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Shengwei Wang  
Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong.

Yi-Ming Wei  
Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, No.5 South Zhongguancun Street, Haidian District, Beijing 100081, P.R.China.

Gwomei Wu  
Chang Gung University, 259 Wen Hua 1st Road, Kweisan, Taoyuan 333, Taiwan.
Contents

Heat rate curve approximation for power plants without data measuring devices.  
Andreas Poulikkas  
651-658

Estimation of clear sky hourly global solar radiation in Iraq.  
Kais J. Al-Jumaily, Munya F. Al-Zuhairi, Zahraa S. Mahdi  
659-666

Increasing energy efficiency of HVAC systems of buildings using phase change material.  
Lee Chusak, Jared Daiber, Ramesh Agarwal  
667-686

Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy.  
Mustamin Rahim, Jun Yoshino, Takashi Yasuda  
687-700

Parametric analysis of geothermal residential heating and cooling application.  
Zoi N. Sagia, Athina B. Stegou, Constantinos D. Rakopoulos  
701-714

Exergy analysis for combined regenerative Brayton and inverse Brayton cycles.  
Zelong Zhang, Lingen Chen, Fengrui Sun  
715-730

Production of hydrogen using composite membrane in PEM water electrolysis.  
E.L.Santhi priya, C.Mahender, Naga Mahesh, V.Himabindu, Y.Anjaneyulu  
731-738

Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas.  
A. A. Madhumathi, B. M.C. Sundarraja  
739-748

A new technology proposed to recycle waste plastics into hydrocarbon fuel in USA.  
Moinuddin Sarker, Mohammad Mamunor Rashid, Mohammed Molla, Muhammad Sadikur Rahman  
749-760

The potential of macroalgae as a source of carbohydrates for use in bioethanol fermentation.  
Nwachukwu A. N, Chukwu M. A.  
761-774

Z. Ramedani, M. Omid, A. Keyhani  
775-786

Finite difference approach on magnetohydrodynamic flow and heat transfer in a viscous incompressible fluid between two parallel porous plates.  
S. S. Das, M. Mohanty, R. K. Padhy, M. Sahu  
787-798
Drying of Leaves of Tendu (Diospyros melonoxylon) plants using a solar dryer with mirror booster.

S. P. Singh, Biplab Paul

Squeal analysis of ventilated disc brake using ansys.

Ahmed Abdel-Naser, Ibrahim Ahmed, Essam Allam, Sabry Allam, Shawki Abouel-seoud

NEW BOOK: CFD Applications in Energy and Environment Sectors: Volume 1.

Chapter 1: Simulation and Modelling of Oxygen Coal Combustion with Flue Gas Recirculation.
Chapter 3: CFD Applications in Natural Ventilation of Buildings and Air Quality Dispersion.
Chapter 4: CFD Modeling of Air Pollutant Transport and Dispersion.
Chapter 5: CFD Modeling of Multiphase Flow in Environmental Engineering.
Chapter 6: CFD Study on the Roles of Trees on Airflow and Pollutant Dispersion within Urban Street Canyons.
Chapter 7: Energy Efficiency and Air Quality in Hospitals Design.
Chapter 8: Application of CFD in Pulverized Fuel Combustion.
Chapter 9: A Heat Transfer Model For Fluids Based on Cellular Automaton Application to an Air Conditioning of A Building.

NEW BOOK: Engineering Applications of Computational Fluid Dynamics: Volume 1.

Chapter 1: Filtered Density Function as a Modern CFD Tool.
Chapter 2: CFD Applications in Steam Boilers.
Chapter 3: CFD Simulation on Human-Environment System.
Chapter 4: CFD Applications in Membrane Technology by Finite Element Analysis.
Chapter 5: CFD Modelling of Stirred Tanks.
Chapter 7: CFD Simulation of Phase Particle Entrapment.
Chapter 8: Simulation of Low-Btu Syngas Combustion in Trapped Vortex Combustor.
Chapter 10: CFD Simulations of Two-Phase Flow.
Chapter 11: CFD Simulation of Syntrophic Anaerobic Digestion of Volatile Fatty Acids in a Continuous Stirred Reactor.

NEW BOOK: CFD Modeling in Development of Renewable Energy Applications.

Chapter 3: Hydrodynamics and Hydropower in the New Paradigm for a Sustainable Engineering.
Chapter 4: Opportunities for CFD in Ejector Solar Cooling.
Chapter 5: Three Dimensional Modelling of Flow Field Around a Horizontal Axis Wind Turbine (HAWT).
Chapter 7: Investigation of Low Reynolds Number Unsteady Flow around Airfoils in Pitching, Plunging and Flapping Motions.
Chapter 8: Justification of Computational Fluid Dynamics Simulation for Flat Plate Solar Energy Collector.
Chapter 9: Comparative Performance of a 3-Bladed Airfoil Chord H-Darrieus & a 3-Bladed Straight Chord H-Darrieus Turbines using CFD.
Chapter 10: Computational Fluid Dynamics for PEM Fuel Cell Modelling.