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Abstract 
This study was carried out in the province of Esfahan in Iran in order to model field emissions of wheat 
production, using artificial neural networks (ANNs). Data were collected from 260 wheat farms in 
Fereydonshahr city with face to face questionnaire method. Life cycle assessment (LCA) methodology 
was developed to assess all the environmental impacts associated with wheat cultivation in the studied 
region. Global warming potential (GWP), eutrophication potential (EP), human toxicity potential (HTP), 
terrestrial ecotoxicity potential (TEP), oxidant formation potential (OFP) and acidification potential (AP) 
were chosen as target outputs. System boundary and functional unite were selected farm gate and one ton 
of wheat grain. All input energies and farm size were selected as inputs and six impact categories were 
chosen as outputs of the model. To find the best topology, several ANN models with different number of 
hidden layers and neurons in each layer were developed. Subsequently, we applied different activation 
functions in each hidden layer to assess the best performance with highest coefficient of determination 
(R2), lowest root mean square error (RMSE) and mean absolute error (MAE). Accordingly, ANN model 
with 12-6-6-6 structure showed the best performance. RMSE for GWP, HTP, EP, OFP, AP and TEP 
were 45.82, 6.22, 7.47, 0.96, 0.28 and 0.09, respectively. Also, MAEs for this model were 14.9, 0.77, 
1.5, 0.02, 0.14 and 0.02 for GWP, HTP, EP, OFP, AP and TEP.  
Copyright © 2013 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Agricultural production uses large quantities of locally available non-commercial energy, such as seed, 
manure and animate energy, as well as commercial energies, directly and indirectly, in the form of diesel 
fuel, electricity, fertilizer, plant protection, chemical, irrigation water, machinery etc. Efficient use of 
these energies helps to achieve increased production and productivity and contributes to the profitability 
and competitiveness of agriculture sustainability in rural living [1]. An agricultural activity is considered 
to be ecologically sustainable if its pollutant emissions and its use of natural resources can be supported 
in the long term by the natural environment. Intensive agricultural production is related to a number of 
environmental problems. High use of external inputs leads to adverse environmental impacts like 
demand for fossil energy resources, phosphorus or potassium, increase in global warming potential, loss 
of biodiversity, degradation of soil quality (e.g. by erosion, compaction or loss of organic matter) and 
pollution of water, soil and air [2]. For instance agricultural production has been identified as a major 
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contributor to atmospheric greenhouse gases (GHG) on a global scale with about 14% of global net CO2 
emissions coming from agriculture [3].  
The first step in the assessment of ecological sustainability is assessment of its environmental impact [4]. 
LCA is a methodology for assessing all the environmental impacts associated with a product, process or 
activity, by identifying, quantifying and evaluating all the resources consumed, and all emissions and 
wastes released into the environment [5]. During the last century, it was mainly used in industrial fields 
but nowadays, most researchers have used it widely to assess the impacts of products, processes and 
activities on the environment [6-10]. Although, LCA has of late been more widely applied in agricultural 
than industrial fields, only few reports are available on its use for analyzing agricultural products (i.e. 
wheat, sugar beet and maize) and cropping systems’ impacts on the environment [11-15].  
Artificial neural networks (ANNs) have been widely used in different fields of agriculture like economic, 
energy and environmental modeling as well as to extend the field of statistical methods, in the Last few 
decades. The advantage of ANNs over statistical methods is reported in Zhang, Eddy Patuwo [16]. A big 
advantage of ANNs over statistical methods is that they require no assumptions about the form of a 
fitting function. Instead, the network is trained with experimental data to find the relationship; so they are 
becoming very popular estimating tools and are known to be efficient and less time-consuming in 
modeling of complex systems compared to other mathematical models such as regression [17, 18]. The 
advantages of ANNs for classification, prediction and solving difficult problems in the different fields of 
agriculture are reported in literature. Ermis, Midilli [19] analyzed world green energy consumption 
through ANNs. They analyzed world primary energy including fossil fuels such as coal, oil and natural 
gas, using feed forward back propagation ANN. Rahman and Bala [20] employed ANNs to estimate jute 
production in Bangladesh. In this study an ANN model with six input variables including Julian day, 
solar radiation, maximum temperature, minimum temperature, rainfall, and type of biomass was applied 
to predict the desired variable (plant dry matter). Pahlavan, Omid [18] developed a network for 
prediction of greenhouse basil production. Safa and Samarasinghe [21] used ANNs for determination and 
modeling of energy consumption in wheat production. They compared ANNs with Multiple Linear 
Regression and found that artificial neural networks can predict energy consumption better than 
regression models. 
Based on the literature, there has been no study on environmental emissions modeling for wheat 
productions with respect to input energies using ANN. The purpose of this study was to model field 
emissions of wheat production in the different impact categories - global warming potential (GWP), 
human toxicity potential (HTP), eutrophication potential (EP), ecotoxicity potential (ETP), acidification 
potential (AP) and oxidant formation potential (OFP) - using artificial neural networks in order to predict 
the environmental indices of this production in Esfahan province of Iran..   
 
2. Material and methods 
2.1 Data collection and processing 
The province of Esfahan is located within 30-42° and 34-30° north latitude and 49-36° and 55-32° east 
longitude. The data were collected from 260 wheat farms in Fereydonshahr city in Esfahan province 
using face to face questionnaire method.  
The sample size was calculated, using the Neyman method [22], to be equals 260, then selection of 260 
wheat producers from the population were randomly carried out. In order to assess environmental 
impacts, LCA method was selected. System boundaries need to be defined for correct accounting of 
emissions associated with inputs, within field/farm activities, and after the product leaves the farm [23]. 
Functional unit and system boundary were determined one ton of wheat grain and the farm gate, 
respectively. Kuesters and Lammel [24] who investigated the energy efficiency of winter wheat 
fertilization proposed a similar comparison per hectare and ton of grains. In their study efficiency of the 
wheat production system was taken into account by a functional unit per ton of wheat grain, while its 
intensity was represented by the functional unit per hectare.  
Defining a meaningful boundary is very important because the environmental problems of agricultural 
systems can arise postharvest when products leave the field. If we define the farm gate as the system 
boundary, we disregard the differences in emissions due to transport and processing of products. We also 
ignore how differences in the end use of the product and its by-products can affect net environmental 
impacts. Due to unavailability of complete set of data we only focused on farm emissions and we 
assumed that all the emissions were related to the input energies which used in wheat cultivation in the 
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farms. All the direct and indirect field emissions were calculated as [25]. The impact-evaluation method 
used was the CML baseline [26]. 
The impact categories of GWP, EP, HTP, TEP, OFP and AP are summarized in Table 1. GWP was used 
to express the contribution that gaseous emission from the arable farm production systems make to the 
environmental problem of climate change. The indicator result is expressed in kg of the reference 
substance, CO2. HT covers the impacts on human health of toxic substances present in the environment. 
TE refers to impacts of toxic substances on terrestrial ecosystems. HTP and TEP are expressed in kg 1,4-
dichlorobenzene equivalent. Eutrophication covers all potential impacts of excessively high 
environmental levels of macronutrients, the most important of which are nitrogen (N) and phosphorus 
(P). EP is expressed in kg PO4

-3 equivalent. Photo-oxidant formation is the formation of reactive 
chemical compounds such as ozone by the action of sunlight on certain primary air pollutants. These 
reactive compounds may be injurious to human health and ecosystems and may also damage crops. This 
indicator result is expressed in kg of the reference substance, ethylene. AP has a wide variety of impacts 
on soil, groundwater, surface waters, biological organisms, ecosystems and materials. AP is expressed in 
kg SO2 equivalents [26]. 
 

Table 1. Environmental impacts associated with the production of wheat in the studied region 
 

Index Equation Equation No. 
Global warming potential* 

i
i

ia mGWP ×= ∑ ,GWP  (1) 

Human toxicity potential* ∑ ∑ ×=
i ecom

,iecom,HTPHTP iecomm  (2) 

Terrestrial ecotoxicity potential* ∑ ∑ ×=
i ecom

,iecom,TETPTEP iecomm  (3) 

Eutrophication potential ∑ ×=
i

ii mEPEP  (4) 

Oxidant formation potential ∑ ×=
i

ii mPOCPOFP  (5) 

Acidification potential ∑ ×=
i

ii mAPAP  (6) 

* 100 years was considered  
 
In Eq. 1 ‘ iaGWP , ’ is the GWP for substance ‘i’ integrated over ‘a’ years (we considered 100 years), 

while ‘m’ (kg) is the quantity of substance ‘i’ emitted. In Eq. 2 and 3 ‘ iecomHTP , ’ and ‘ iecomTETP , ’ are 
the HTP (the characterization factor) and TEP for substance ‘i’ emitted to emission compartment 
‘ ecom ’ (=air, fresh water, seawater, agricultural soil or industrial soil), while ‘ iecomm , ’ is the emission of 

substance ‘i’ to medium ‘ ecom ’. ‘ iEP ’ in Eq. 4 is the EP for substance ‘i’ emitted to air, water or oil, 

while ‘mi’ is the emission of substance ‘i’ to air, water or soil. . ‘ iPOCP ’ in Eq. 5 is the Photochemical 
Ozone Creation Potential for substance ‘i’, while ‘mi’ is the quantity of substance ‘i’ emitted. In Eq. 6 
‘ iAP ’ is the Acidification Potential for substance ‘i’ emitted to the air; while ‘mi’ is the emission of 
substance ‘i’ to the air [26]. 
 
2.2 Selecting inputs for the ANN model and model development 
To model field emissions, finding the appropriate independent variables was the first step of model 
creation. Accordingly, all relevant variables and their correlations were studied. Variables were selected 
on the basis of having no significant correlation between them, but a high correlation with field 
emissions. The used sample size in this study was 260 farms. NeuroSolutions 5.07 package randomly 
selected a sample of 156 farms (60%) for training, a sample of 39 farms (15%) for cross validation and 
remaining 65 farms (25%) were used for test. Input energies (labor, chemical fertilizers, FYM, diesel 
fuel, Water for irrigation, electricity, pesticides and machinery) and farm size were selected as inputs and 
the six impact categories (GWP, HTP, EP, ETP, AP and OFP) were selected as outputs of the model. 
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A feed-forward back-propagating (BP) multilayered perceptron (MLP) was used to develop prediction 
models for environmental indices. A feed-forward network is a common ANN architecture that requires 
relatively little memory and is generally fast [27]. Data move through the layers in one direction, from 
the input through the hidden to the output layers, without loops as opposed to feedback networks. An 
ANN structure usually consists of a layer of input neurons, a layer of output neurons and one or more 
hidden layers. The model can be written mathematically as [18, 28, 29]: 
 

∑ ∑
= =

− ==+⎟
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⎞
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⎝
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++=

n

j
t

m

i
jitijj yf
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00t n]1,...,j and m1,...,[i      y εββαα  (7) 

 
where ‘m’ is the number of input nodes, ‘n’ is the number of hidden nodes, ‘αj’ denotes the vector of 
weights from the hidden to output nodes and ‘βij’ denotes the weights from the input to hidden nodes. 
‘α0’ and ‘β0j’ represent weights of arcs leading from the bias terms which have values always equal to 1 
and ‘f’ is a sigmoid transfer function. 
 
Multiple layers of neurons with non-linear transfer functions allow the network to learn nonlinear and 
linear relationships between input and output parameters. The linear output layer lets the network to take 
any values even outside the range -1 to +1; while if the last layer of a multilayer network has sigmoid 
neurons, then the outputs of the network will be only in a limited range [18]. 
For making a comparison between different topologies we needed some indicators in order to get a good 
vision of various structures. Mean square error (MSE) is very applicable to compare different models; it 
shows the networks ability to predict the correct output. The MSE can be written as [21]: 
 

( )∑ −=
n

i
ii zt 2

n
1 MSE  (8) 

 
where ‘ti’ and ‘zi’ are the actual and the predicted output for the ith training vector, and ‘N’ is the total 
number of training vectors.  
Mean absolute error (MAE) between the predicted and actual values and coefficient of determination 
(R2) were calculated using the following equations [18]: 
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where ‘ti’ and ‘zi’ are respective predicted and actual output for the ith farmer. 
 
3. Results 
3.1 Environmental impact assessment of wheat production 
Previous studies in Esfahan province on other crops showed a high consumption of input energies 
especially chemical fertilizers [18, 30]. High consumption of fertilizers causes serious environmental 
problems in the long term, due to different emissions to water, soil and air. Accordingly, at the first step 
of field emissions modeling, we needed to calculate the related emissions for each surveyed farm. All 
emissions were calculated as Nemecek and Kagi [25]. Since we considered farm gate as the system 
boundary, the emissions of factory processes were disregarded in this study. So, we only focused on the 
farms as the system boundary.  
Emissions to water from agricultural soils are determined as substances that leave the root zone of the 
plants. Thereby, the topsoil is regarded as a part of the techno-sphere. E.g. nutrients are added to the soil 
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and most of it is assimilated and harvested by the crops. Emissions are only related to the phosphate, i.e. 
the difference between inputs to and removals from the field.  
After calculating all emissions we converted them to the reference substances according to the each 
impact category (using characterization factors). For instance, in the impact category of Global warming 
potential all the emissions were converted to CO2 equivalent according to CML guidelines [26]. By using 
Eqs. 1-6 values of the potential environmental impact of the wheat cultivation were calculated. 
Table 2 summarizes the average of each impact category for wheat cultivation in the studied area. In a 
study on optimization of wheat production systems in Swiss, it was revealed that in order to reduce the 
adverse environmental impacts of chemical fertilizers usage the yields should increase. Subsequently, the 
emissions, resulting from the use of chemical fertilizers, will be modified [31]. Brentrup [32] concluded 
that a good environmental performance in wheat production was achieved by maintaining high-yields in 
order to use land most efficiently, to apply fertilizers according to crop demand and to limit emissions of 
NO3, NH3 and N2O. 
 

Table 2. Values of the potential environmental impact of the wheat cultivation 
 

Impact category Unit Quantity 
Global warming potentiala kg CO2 eq. 906.1 
Eutrophication potential kg PO4

-2 eq. 15.18 
Human toxicity potentiala kg 1,4-DCB eq.b 1092 
Terrestrial ecotoxicity potentiala kg 1,4-DCB eq.b 0.22 
Acidification potential kg Ethylene eq. 10.11 
Oxidant formation potential kg SO2 eq.  0.0073 

a Considering 100 years. 
b DCB= Dichlorobenzene. 
Note: emissions are calculated per ton of grain produced 
 
3.2 ANN models: Evaluation and error analysis 
Several MLP networks were designed, trained and generalized, using the NeuroSolutions 5.07 software 
package [33]. Different topologies were designed, using different algorithms and diverse number of 
hidden layers and neurons in each layer. Also we applied various activation functions in each layer to 
investigate which topology gave the best performance. To make a comparison between different 
topologies we used some indices as mentioned above. Table 3 summarizes the best results of the various 
topologies. Among these, the best model consisted of an input layer with twelve input variables, two 
hidden layers with six neurons in each layer, and an output layer with six output variables (12-6-6-6 
structure), highlighted in Table 3. 
 

Table 3. Network performance of environmental prediction for different number of hidden layer (H) 
 

RMSE  R2  
No. 

 
H GWP HTP EP OFP AP TEP  GWP HTP EP OFP AP TEP 

1 1 511.9 66.4 13.9 1.7 3.8 0.5  0.979 0.976 0.969 0.989 0.99 0.991 
2 1 209.4 27.2 5.3 0.6 2.1 0.3  0.994 0.992 0.99 0.995 0.995 0.983 
3 2 406.3 53.1 10.1 1.3 6.9 0.9  0.9766 0.95 0.96 0.949 0.944 0.985 
4 2 361.1 46.8 9.2 1.2 3.8 0.5  0.981 0.989 0.958 0.984 0.981 0.992 
5* 2 45.8 6.2 7.4 0.9 0.28 0.09  0.999 0.997 0.97 0.998 0.999 0.995 
6 3 649.6 84.1 18.1 2.3 8.3 1.1  0.972 0.973 0.919 0.967 0.966 0.966 
7 3 239.5 31.1 6.9 0.9 2.5 0.3  0.992 0.989 0.976 0.995 0.993 0.999 
Note the highlighted numbers shows the best performance of the network 
* The best topology of ANNs 
 
Back propagation algorithm was chosen to build these models. The used algorithm in the best topology 
was logsig. Figure 1 shows desired outputs and actual network outputs. It can be seen the desired outputs 
closely follow the actual ones.  
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Figure 1. Desired output and actual network output 

 
 
MAEs for the chosen model were 14.9, 0.77, 1.5, 0.02, 0.14 and 0.02 for GWP, HTP, EP, OFP, AP and 
TEP, respectively. This topology produced the highest coefficient of determination for different impact 
categories (except for EP) and the lowest values of MAE and RMSE. Figures 2-4 show R2 for impact 
categories of GWP, HTP and EP based on the best topology of the ANN model. These results indicate 
that, this model can predict the environmental burdens quiet closely to the actual ones. So, this model 
was selected as the best one for estimating the environmental burdens on the basis of input energies and 
farm size in the studied region. 
 
 

 
Figure 2. Correlation between actual and predicted GWP based on the best topology 
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Figure 3. Correlation between actual and predicted HTP based on the best topology 

 

 
Figure 4. Correlation of actual and predicted EP based on the best topology 

 
3.3 Sensitivity analysis 
A sensitivity analysis was performed using the best network selected in order to assess the predictive 
ability and validity of the developed model (Table 4). The robustness of the model was determined by 
examining and making a comparison between the outputs produced during the validation stage and the 
calculated values. According to the results in Table 4, the share of each input item of developed MLP 
model on desired outputs can be seen clearly. Sensitivity analysis provides perception of the usefulness 
of individual variables. By the help of this kind of analysis it is possible to judge what parameters should 
be considered as the most significant and least significant ones during generation of the satisfactory MLP 
[18]. Farm size had the highest sensitivity on GWP and followed by FYM and nitrogen. Farm size had 
the highest sensitivity on all impact categories and Potassium had the lowest sensitivity on all ones.  
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Table 4. Sensitivity analysis results for input energies 
 

Sensitivity GWP HTP EP AP 
Farm size 26.0703 2.2884 0.5999 0.8278 
Labor 0.0319 0.0013 0.0007 0.0007 
Nitrogen 0.0608 0.001 0.0004 0.0008 
Phosphate 0.0043 0.0001 0.0051 0.0001 
Potassium 0.0005 0.0001 0.0001 0.0001 
FYM 0.8798 0.0227 0.0043 0.0157 
Diesel 0.0477 0.0025 0.0001 0.0001 
Electricity 0.0058 0.0001 0.0001 0.0001 
Seed 0.0015 0.0001 0.0002 0.0001 
Pesticide 0.0108 0.0105 0.0001 0.0003 
Machinery 0.0016 0.0001 0.0001 0.0001 
Water for irrigation 0.0398 0.0002 0.0006 0.0005 

 
According to these results we can recognize which input in each impact category is the most effective 
parameter on the output parameters. Subsequently we can eliminate the insignificant parameters from the 
model and develop new models based on the fewer inputs. We should highlight that some inputs like 
farm size has indirect effect on the outputs. Previous studies in the region showed that there were 
significant differences between large and small farms from the energy consumption point of view [30]. 
Accordingly, it can be justified why farm size had high impacts on outputs. In the impact category of 
GWP, farm size, FYM, nitrogen, diesel fuel, irrigation and pesticides played the most important role, 
respectively. 
 
4. Conclusions  
The objective of this study was to model field emission of wheat production in Esfahan province of Iran 
in six impact categories using artificial neural networks. The considered environmental indices were 
global warming potential (GWP), human toxicity potential (HTP), eutrophication potential (EP), 
ecotoxicity potential (ETP), acidification potential (AP) and oxidant formation potential (OFP).   
Results of this study revealed that LCA was a good tool for evaluation of environmental burdens. 
Average of the GWP, EP, HTP, TEP, OFP and AP were 906.1 kg CO2 eq., 15.18 kg PO4

-2 eq., 1092 kg 
1,4-DCB eq., 0.22 kg 1,4-DCB eq., 0.0073 kg Ethylene eq. and 10.11 kg SO2 eq., respectively.  
This paper demonstrated the valuable application of Multilayer Feed Forward Networks in modeling the 
environmental burdens of wheat production in the studied region. The ANN model with 12-6-6-6 
structure gave the best performance for prediction of the different impact categories. This topology 
produced the highest coefficient of determination and the lowest values of MAE and RMSE. The power 
of the model was assessed by examining and comparing the output produced during the validation stage 
with the calculated values. Farm size had the highest sensitivity on all impact categories, whereas 
potassium had the lowest sensitivity on all impact categories. 
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