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Abstract 
The attention that is currently being given to the emission of pollutant gases in the atmosphere has made 

the fuel cell (FC), an energy conversion device that cleanly converts chemical energy into electrical 

energy, a good alternative to other technologies that still use carbon-based fuels. The temperature plays 
an important role on the efficiency of an FC as it influences directly the humidity of the membrane, the 

reversible thermodynamic potential and the partial pressure of water; therefore the thermal control of the 

fuel cell is the focus of this paper. We present models for both high and low temperature fuel cells based 

on the solid-oxide fuel cell (SOFC) and the polymer electrolyte membrane fuel cell (PEMFC). A 
thermodynamic analysis is performed on the cells and the methods of controlling their temperature are 

discussed. The cell parameters are optimized for both high and low temperatures using a Java-based 

multi-objective genetic algorithm, which makes use of the logic of the biological theory of evolution to 
classify individual parameters based on a fitness function in order to maximize the power of the fuel cell. 

Applications to high and low temperature fuel cells are discussed. 

Copyright © 2013 International Energy and Environment Foundation - All rights reserved 
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1. Introduction 
Because of the clean and high density energy they provide and their potential applications, fuel cells 

have drawn a lot of attention in the last few decades. Two types of fuel cells have received the greatest 

attention; they are the Proton Exchange Membrane and the Solid Oxide Fuel Cells (PEMFC and SOFC, 

respectively), both operate under different temperature ranges. While the PEMFC works in a temperature 
range from 300 to 400°C [1], the SOFC may operate at much higher temperatures, sometimes even close 

to 1100°C [2]. Much has been done in fuel cell modeling and experimentation [1-15], but those models 

are not always optimized for best performance. In this paper, we present models for both low and high 
temperature fuel cells and optimize their parameters. We also analyze the influence of each design 

parameter in the performance of the fuel cell. 

The construction and operation of a high temperature fuel cell is many times restricted by external 

factors and for these reasons the low temperature fuel cells, especially the PEMFC, have been more 
explored and researched. The restriction factors on high temperature fuel cells include issues related to 
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good water management and/or the manufacturing of a membrane that operates under acceptable power 

output even without proper humidification [16]. The humidification is a huge problem because in high 
temperature fuel cells such as the SOFC, the water output from the chemical reaction is in the vapor 

phase due to the high temperature. In order to maintain water in its liquid state, impracticable pressures 

are necessary, as can be seen from Figure 1. Another reason for the manufacturing of a high temperature 
fuel cell is difficult is because the membrane is often made of ceramic which goes through a thermal 

expansion in a confined space; since ceramic is a brittle material, it causes it to crack unexpectedly. On 

the other hand, high temperature fuel cells offer a higher power output than the low temperature fuel 

cells and the heat lost in its operation may be used for other purposes, such as operating a steam turbine 
for cogeneration [7, 13]. Because of problems with the mechanical resistance due to high temperature of 

fuel cells, they are mostly limited to stationary applications [9]. 

The goal of this paper is to employ a multi-objective genetic algorithm in order to optimize the 
parameters of both a high temperature and low temperature fuel cell. We create a family of points that 

would produce a desirable outcome, for example maximizing the power as well as minimizing the 

pressure exerted on both the cathode and the anode. As design parameters, we use the temperature, the 
current density, the pressure exerted on the cathode and anode, as well as the mass fraction of each 

component (oxygen, hydrogen and water). We also analyze the effect of several design parameters. 

 
 

Figure 1. Saturation pressure of water as a function of temperature 

 

 
As a first simulation tool, we use MATLAB to predict the performance of the fuel cell and then we 

employ the Java-based multi-objective genetic algorithm package jMetal [17], in which we run a 

modified version of the Kursawe problem [18], which allows us to choose any number of objectives, 
parameters and constraints, to optimize the performance of the fuel cell. 

Because of the lower temperature operation, much has been done in the field of PEM fuel cells. The 

dynamics of the fuel cell has been discussed in [19] and the control modeling for automotive use has 

been discussed in [11], in these papers the authors discuss a transient model, including the study of mass 
flow and inertia dynamics as well as the manifold filling dynamics. Fuel cell stack systems have been 

discussed in [14], where a stack of 125 PEMFC is used for model validation. 
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As for SOFC, many of the models include different geometry. We can find models for planar cells [7, 8], 

cylindrical cells [13], and tubular cells [2]. There are also studies in anode and cathode supported fuel 
cells [7] and their effects on the performance [6]. 

One of the main concerns of fuel cells operations is water management. Even though there is some work 

done in this area [16], the subject is still under a great deal of research and requires attention, especially 
since it is known that humidity and water management play a major role in fuel cell performance [20]. 

 

2. Fuel cell models 

Fuel cells are devices that convert chemical energy into electrical energy. Because of the complex 
modeling requirements, Computational Fluid Dynamics (CFD) has been a major player in full scale 

comprehensive simulations. In this paper, we focus our efforts to the optimization of a simpler fuel cell 

model that does not require complex CFD simulations. Obtaining a good model is a difficult task, mainly 
because it is necessary to capture the complex phenomena such as multi-species gas mixtures and fluid 

flow, heat transfer, electrochemical reactions, and diffusion through the layers. 

For both SOFC and PEMFC, we assume a planar model with 3 main layers: (1) the anode, (2) the 
electrolyte, and (3) the cathode as shown in Figure 2. 

 

 
 

Figure 2. Structure of the fuel cell 

 

The main reaction is the same for both types of fuel cells: the oxidation of the hydrogen and thus the 
formation of water. The oxygen flows in the cathode and is adsorbed at the cathode and thus is reduced 

by electrons coming from the external load: 

 
1

2
𝑂2 + 2𝑒− → 𝑂2− (1) 

 

The hydrogen is then adsorbed in the anode and the oxygen ion reacts with the hydrogen: 

 
𝐻2 + 𝑂2− → 𝐻2𝑂 + 2𝑒− (2) 

 

The overall reaction is then given by: 

 

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂 (3) 

 

 

2.1 Analysis of the reversible fuel cell 
Just like any other thermodynamic system, a fuel cell can be analyzed as a reversible heat engine. The 

good thing about this approximation is that the FC may be considered as a black box control volume, for 

which one does not need to know the underlying physical phenomena or how to model them. One can 
then proceed by considering that the system simply has an input of oxygen and hydrogen at a certain 

temperature and pressure, and gives outputs of work, heat and water also at a certain temperature and 

pressure. Figure 3 presents the reversible fuel cell modeled as a black box control volume, with the 
inflow of oxygen and hydrogen, and outflow of water, work and heat. 

As discussed in [21], the fuel cell efficiency is given by: 
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𝑒 =  
𝑤

−Δ𝑕(𝑇)
=  

Δ𝑔(𝑇)

Δ𝑕(𝑇)
 (4) 

 

The reversible efficiency as a function of temperature is shown in Figure 4. 
 

 
 

Figure 3. Outline of the reversible fuel cell 

 
 

Figure 4. Reversible fuel cell efficiency as a function of temperature 

 
 

2.2 Solid oxide fuel cell model 

The SOFC model is used as a baseline for the prediction of a high temperature fuel cell. The model 
presented here includes the influence of the theoretical thermodynamic voltage as well as activation, 

concentration and ohmic losses. The output voltage is then given by: 
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𝑉 = 𝐸 − 𝜂𝑎𝑐𝑡 ,𝑎𝑛 − 𝜂𝑎𝑐𝑡 ,𝑐𝑎 − 𝜂𝑜𝑕𝑚,𝑒𝑙 − 𝜂𝑜𝑕𝑚,𝑐𝑎 − 𝜂𝑜𝑕𝑚,𝑎𝑛 − 𝜂𝑐𝑜𝑛 ,𝑎𝑛 − 𝜂𝑐𝑜𝑛 ,𝑐𝑎  (5) 

 

where 𝜂𝑎𝑐𝑡  are the activation losses for the cathode and the anode; 𝜂𝑜𝑕𝑚  are the ohmic losses for the 

electrolyte, the cathode and the anode; 𝜂𝑐𝑜𝑛  are the concentration losses for the cathode and the anode; 

and 𝐸 is the thermodynamic potential given by the Nernst equation. 

 

2.2.1 Thermodynamic potential 

The thermodynamic potential may be expressed by the Nernst equation [6]: 
 

𝐸 = 𝐸0 𝑇 +  
𝑅𝑇

𝑛𝐹
ln  

𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒
0.5𝑥𝑂2

0.5𝑥𝐻2

𝑥𝐻2𝑂
  (6) 

 

where 𝑅 = 8.3145
𝐽

𝑚𝑜𝑙  𝐾
 is the universal gas constant, 𝐹 = 96485

𝐶

𝑚𝑜𝑙
 is the Faraday constant, 𝑛 = 2 is 

the number of reactant electrons, 𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒  is the cathode pressure, 𝑥 is the mass fraction of each 

component and 𝐸0(𝑇) is the reversible potential, expressed by: 

 

𝐸0 𝑇 =  −
Δ𝐺(𝑇)

𝑛𝐹
 (7) 

 

and Δ𝐺 𝑇  is the variation in the Gibbs free energy given by: 
 

Δ𝐺 𝑇 = Δ𝐻 𝑇 − 𝑇  Δ𝑆0 +  
Δ𝐶𝑝 (𝑇)

𝑇
𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓
  (8) 

 

Δ𝐻 𝑇 = Δ𝐻0 +  Δ𝐶𝑝 𝑇 
𝑇

𝑇𝑟𝑒𝑓
𝑑𝑇 (9) 

 

Δ𝐶𝑝 = 𝐶𝑝,𝐻2𝑂 − 𝐶𝑝,𝐻2
− 0.5𝐶𝑝 ,𝑂2

 (10) 

 

The heat capacity is interpolated by a polynomial (Table 1) [22]: 
 

𝐶𝑝 𝑇 =   𝑎𝑖𝑇
𝑖6

𝑖=0  (11) 

 
 

Table 1. Heat capacity coefficients 
 

 𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 

𝐻2𝑂 37.373 -41.205 146.05 -217.08 181.54 -79.409 14.015 

𝑂2 34.85 -57.975 203.68 -300.37 231.72 -91.821 14.776 

𝐻2  21.157 56.036 -150.55 199.29 -136.15 46.903 -6.4725 

 

It is also important to note that the mass fraction of the water is dependent on the mass fraction of the 

hydrogen in such a way that 
 

𝑥𝐻2𝑂 = 1 − 𝑥𝐻2
 (12) 

 
as they are both present in the cathode only. Furthermore, it can be seen that the thermodynamic 

potential is almost linearly dependent on the temperature. 

 

2.2.2 Activation over-potential 
The activation over-potential is the main loss in low current densities even though it increases with the 

current, its derivative is much stronger when 𝑖 is small. 

Because the reaction is not always initiated as fast as intended by the thermodynamic analysis, there are 
losses associated with the number of reactions taking place in the fuel cell. It is important to note that 

increasing the rate at which the chemical reaction takes place can increase the output of the system. The 

activation over-potential is the loss associated with the delay of the reactants that actually enter the 
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cathode/anode and react with the electrolyte. This delay is sometimes said to be an energy barrier which 

the reaction has to overcome before full power [2]. For this reason, there are activation losses associated 
with both the cathode and the anode. We use the Butler-Volmer equation to express the activation over-

potential. 

 

𝑖 = 𝑖𝑜,𝑎  exp 𝛼𝑎
𝑛𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡 ,𝑎 − exp  −𝛼𝑐

𝑛𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡 ,𝑎   (13) 

 

𝑖 = 𝑖𝑜,𝑐  exp  𝛼𝑎
𝑛𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡 ,𝑐 − exp  −𝛼𝑐

𝑛𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡 ,𝑐   (14) 

 
These equations need to be solved for the activation over-potential and are solved by an iterative method. 

We choose Newton’s method with a maximum error of 1e5. The parameters used in the equations are 

𝛼𝑎 , 𝛼𝑐 , 𝑖𝑜 , which are the charge transfer coefficients for the anode and cathode and the exchange current 

density respectively. The exchange current density is obtained from an equation described in [7]: 
 

𝑖𝑜,𝑎 =  𝛾𝑎  
𝑝𝐻2

𝑝𝑟𝑒𝑓
  

𝑝𝐻2𝑂

𝑝𝑟𝑒𝑓
 exp  −

𝐸𝑎𝑐𝑡 ,𝑎

𝑅𝑇
  (15) 

 

𝑖𝑜,𝑐 =  𝛾𝑐  
𝑝𝑂2

𝑝𝑟𝑒𝑓
 

0.25

exp  −
𝐸𝑎𝑐𝑡 ,𝑐

𝑅𝑇
  (16) 

 
2.2.3 Ohmic over-potential 

The ohmic, also called resistant, over-potential is due to the impossibility of a smooth charge transport 

through the membrane of the fuel cell. Furthermore, as electrons and ions must be transported, the 

resistance associated with both parts must be taken into account. The modeling of this phenomenon 
requires the specification of a membrane. We take in consideration the resistivity of the electrolyte, the 

cathode and the anode, although most of the time the contribution of the last two may be neglected. 

As the electrolyte of a SOFC is ceramic, its conductivity at low temperature is very low and increases 
quickly as higher temperatures are achieved. This profile is provided in [7]: 

 

𝜎𝑒 = 𝜌𝑒
−1 = 𝛽1 exp  −

𝛽2

𝑇
  (17) 

 

The conductivity of both anode and cathode are considered constant in the temperature range studied in 
this paper. The ohmic losses are given by: 

 

𝜂𝑜𝑕𝑚,𝑒 =  𝑡𝑒𝜌𝑒 𝑖 (18) 

 

𝜂𝑜𝑕𝑚,𝑎 =  𝑡𝑎𝜌𝑎 𝑖 (19) 

 

𝜂𝑜𝑕𝑚,𝑐 =  𝑡𝑐𝜌𝑐 𝑖 (20) 

 

where 𝜌 is the resistivity and 𝑡 is the thickness of each component. 

 

2.2.4 Concentration over-potential 
The concentration overvoltage is due to the mass transport across the cell. If the ions and electrons 

manage to pass through the membrane, they may face a “crowding” on the other side because the outputs 

of the cell may not be optimized and thus the flow will not be uniform, causing the particles to stack in 
the exit and thus causing a huge loss of energy, especially at high current densities. In high temperature 

fuel cells, the concentration losses are often neglected, as they are considered not to be of great influence 

and furthermore their modeling can be very complicated. In low temperature fuel cells, however, they 

have a huge role in limiting the current. Ref. [7] describes a reliable model for this kind of loss. 
 

𝜂𝑐𝑜𝑛𝑐 ,𝑐 =  −
𝑅𝑇

2𝑛𝐹
ln  

1

𝑥𝑂2

−  
1

𝑥𝑂2

− 1 exp  
𝑅𝑇𝑡𝑐

2𝑒𝐹𝐷𝑒𝑓𝑓 ,𝑐𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒
   (21) 
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𝜂𝑐𝑜𝑛𝑐 ,𝑎 =  −
𝑅𝑇

2𝑛𝐹
ln  

1−
𝑖𝑅𝑇 𝑡𝑎

𝑛𝐹 𝐷𝑒𝑓𝑓 ,𝑎𝑝𝐻2

1+
𝑖𝑅𝑇 𝑡𝑎

𝑛𝐹 𝐷𝑒𝑓𝑓 ,𝑎𝑝𝐻2𝑂

  (22) 

 

where 𝐷𝑒𝑓𝑓  is the effective diffusion coefficient. 

 
2.2.5 Parameters and properties 

The parameters and properties used in running the model are shown in Table 2. These parameters are 

taken from [6-8, 13]. We take 𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒 , 𝑝𝑎𝑛𝑜𝑑𝑒 , 𝑇, 𝑖, 𝑥𝑂2
, 𝑥𝐻2

 as design parameters for our optimization.  

The thermodynamic potential and the losses described are plotted in Figures 5 and 6 for 𝑥𝑂2
= 𝑥𝐻2

=

0.97 and 𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒 = 𝑝𝑎𝑛𝑜𝑑𝑒 = 3 × 105  𝑃𝑎. 

 
 

Table 2. Parameters for the SOFC 

 

Parameter Value 

𝛾𝑎  5.5 x 10
8
 A/m

2
 

𝛾𝑐  7 x 10
8
 A/m

2
 

𝐸𝑎𝑐𝑡𝑎 ,𝑎  140 x 10
3
 J/mol 

𝐸𝑎𝑐𝑡𝑎 ,𝑐  137 x 10
3
 J/mol 

𝛼𝑎  0.5 

𝛼𝑐  0.3 

𝛽1 20500 Ω
-1

m
-1 

𝛽2 9030 K 

𝜌𝑎  3.3 x 10
-5
 Ω m 

𝜌𝑐  7.7 x 10
-5
 Ω m 

𝑡𝑎  0.1 mm 

𝑡𝑐  1 mm 

𝑡𝑒  0.1 mm 

𝐷𝑒𝑓𝑓 ,𝑎  2.1 x 10
-5
 m

2
/s 

𝐷𝑒𝑓𝑓 ,𝑐  5.4 x 10
-6
 m

2
/s 

𝐻0  (HHV) -242 x 10
3
 J/mol 

𝑆0  -44.4 J/mol-K 

𝑝𝑟𝑒𝑓  101.33 kPa 

 
 

2.3 Proton exchange membrane fuel cell 

The PEMFC is used as a model to simulate a low temperature fuel cell. The model we describe here is 

much simpler than the one used to simulate the high temperature fuel cell, but still is widely used in the 
literature. We include the thermodynamic potential as well as ohmic, activation and concentration losses, 

without distinction from the electrolyte, cathode or anode. 

 

𝑉 = 𝐸 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜𝑕𝑚 − 𝜂𝑐𝑜𝑛  (23) 

 

2.3.1 Thermodynamic potential 
The thermodynamic potential (Nernst equation) can also be written for low temperatures and small 

temperature variations as: 

 

𝐸 = 𝐸𝑜 +
Δ𝑆

2𝐹
 𝑇 − 𝑇𝑟𝑒𝑓  +

𝑅𝑇

2𝐹
ln  

𝑝𝐻2 𝑝𝑂2

𝑝𝐻2𝑂
  (24) 

 
At standard temperatures and pressures (STP), this equation reduces to [15]: 

 

𝐸 = 1,229 − 8.5 × 10−4 𝑇 − 298 + 4.308 × 10−5𝑇 ln  
𝑝𝐻2 𝑝𝑂2

𝑝𝐻2𝑂
  (25) 
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Figure 5. Potentials as a function of current density for T = 1100K 

 

 
 

Figure 6. Potentials as a function of temperature for i = 1 A/cm² 
 

2.3.2 Activation over-potential 

The model we adopt for the activation over-potential was validated by Pukrushpan et al. [11] for an 
automotive fuel cell; it can be used for any PEMFC system as long as the membrane is well humidified 

(which we expect to be) and the pressures are controlled. It can be written as: 
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𝑉𝑎𝑐𝑡 = 𝑉𝑜 + 𝑉𝑎(1 − 𝑒−𝑐1𝑖) (26) 

 

𝑉𝑜 = 0.279 − 8.5 × 10−4 𝑇 − 298 + 4.3085 × 10−5𝑇  ln  
𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒 −𝑝𝑠

1.101325
 +

1

2
ln  

0.1173 (𝑝𝑐𝑎𝑡 𝑕𝑜𝑑𝑒 −𝑝𝑠)

1.01325
   (27) 

 

𝑉𝑎 =  −1.618 × 10−5𝑇 + 1.618 × 10−2  
𝑝𝑂2

0.1173
+ 𝑝𝑠 

2

+  1.8 × 10−4𝑇 − 0.166  
𝑝𝑂2

0.1173
+ 𝑝𝑠  −

5.8 × 10−4𝑇 + 0.5736 (28) 
 

where 𝑝𝑠 is the saturation pressure of water at a given temperature. In some investigations, the saturation 

pressure of water is held constant during the optimization or the method used to track it is not described 

[15]. However, the saturation pressure of water is strongly dependent on temperature, and thus in this 
paper we suggest the use of Wagner’s equation [23]. 

 

ln  
𝑝𝑠

𝑝𝑐
 =  𝑎1𝑡 + 𝑎2𝑡

1.5 + 𝑎3𝑡
3 + 𝑎4𝑡

3.5 + 𝑎5𝑡
4 + 𝑎6𝑡

7.5  
𝑇𝑐

𝑇
 (29) 

 

where 𝑝𝑐  and 𝑇𝑐  are the critical pressure and temperature of the desired substance and 𝑡 = 1 − 𝑇/𝑇𝑐 . For 

water, the coefficients of the equation are shown in Table 3. The plot is shown in Figure 1. 

 
Table 3. Coefficients of Wagner’s equation 

 

a1 a2 a3 a4 

-7.8595173 1.8448259 -11.7866497 22.6807411 

a5 a6 pc Tc 

-15.9618719 1.80122502 220.64 atm 647.096 K 

 
 

2.3.3 Ohmic over-potential 

The membrane used in this study is the Nafion-117. The model presented accounts for both the resistance 

of the ionic and electronic transport [24]. 
 

𝑉𝑜𝑕𝑚 = 𝑖(𝑟𝑒𝑙 + 𝑟𝑖𝑜𝑛 ) (30) 

 

𝑟𝑒𝑙 =  
𝑡𝑚

𝜎
 (31) 

 

𝑟𝑖𝑜𝑛 = 𝑡𝑚  
181 .6 1+0.03𝑖+0.062 

𝑇

303
 

2
𝑖2.5 

 𝜆𝑚 −0.634−3𝑖 exp  4.18 
𝑇−303

𝑇
  
  (32) 

 

𝜎 =
1

𝑏11𝜆𝑚 −𝑏12
exp  𝑏2( 

1

𝑇
−

1

303
 )  (33) 

 

where 𝑟 are the ionic and electronic resistances, 𝑡𝑚  is the membrane thickness [cm], 𝜎 is the membrane 

conductivity [Ω
-1

cm
-1

], 𝜆𝑚  is the membrane humidification factor which varies from 14 (dry) to 24 
(highly supersaturated). Figure 7 highlights the importance of membrane humidification. 

 
 

2.3.4 Concentration over-potential 
For the concentration overpotential, we use a very general model described in [25]: 

 

𝑉𝑐𝑜𝑛 = −
𝑅𝑇

2𝐹
 1 +

1

𝛼
 ln  1 −

𝑖

𝑖𝑚𝑎𝑥
  (34) 

 

As mentioned before when describing the SOFC, for high temperature fuel cell the concentration over-

potential does not play a major role. In low temperature fuel cell however, it often limits the maximum 

current admitted. In Figure 8, this effect is illustrated by setting imax = 1 A/cm². The charge transfer 
coefficient usually varies between 0.3 and 0.5. 
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Figure 7. Influence of membrane humidification in the ohmic over-potential 

 
 

 
 

Figure 8. Influence of the limiting current in the concentration over-potential 

 
 

3. Brief description of the genetic algorithm 

In this section, we briefly describe the genetic algorithm (GA) and discuss the techniques it uses to 

obtain the optimized result. 
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3.1 Single objective genetic algorithms (SOGA) 

Genetic algorithms are a class of stochastic optimization algorithms inspired by the biological evolution. 
In GA, a set or generation of input vectors, called individuals, is iterated over, successively combining 

traits (aspects) of the best individuals until a convergence is achieved. In general, GA employs the 

following steps [26]. 
1. Initialization: Randomly create N individuals. 

2. Evaluation: Evaluate the fitness of each individual. 

3. Natural selection: Remove a subset of the individuals. Often the individuals that have the lowest 

fitness are removed; although culling, the removing of those individuals with similar fitness, is 
sometimes performed.   

4. Reproduction: Pick pairs of individuals to produce an offspring. This is often done by roulette 

wheel sampling; that is, the probability of selecting some individual hi for reproduction is given by: 

 




j

j

i
i

hfitness

hfitness
hP

)(

)(
][  (35) 

 

A crossover function is then performed to produce the offspring. Generally, crossover is implemented by 

choosing a crossover point on each individual and swapping alleles or vector elements at this point as 
illustrated in Figure 9. 

5. Mutation: Randomly alter some small percentage of the population. 

6. Check for Convergence: If the solution has converged, return the best individual observed. If the 
solution has not yet converged, label the new generation as the current generation and go to step 2. 

Convergence is often defined by a certain number of generations or a similar threshold. 
 

 
 

Figure 9. Illustration of the general crossover function in genetic algorithm (GA) 

 
3.2 Multi-objective genetic algorithm (MOGA) 

For many design problems, it is desirable to achieve, if possible, simultaneous optimization of multiple 

objectives [27]. These objectives, however, are usually conflicting, preventing simultaneous optimization 
of each objective [28]. Therefore, instead of searching for a single optimal solution, a multi-objective 

genetic algorithm is necessary to find a set of optimal solutions (generally known as Pareto-optimal 

solutions). For Pareto-optimal solutions, any individual inside the set dominates any individual outside 
the set while any individual in the set is not dominated by another individual in this solution set. The 

MOGA algorithms used to find the Pareto-optimal solutions to the airfoil optimization problem in this 

study is widely known as NSGA-II [29]. It has the following three features: (1) it uses an elitist principle, 

(2) it uses an explicit diversity preserving mechanism, and (3) it emphasizes non-dominated solutions in 
a population. The implementation procedure of NSGA-II is as follows [17]: 
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1.  At 0-th generation, a random parent population P0 of size N is created; it is sorted based on the non-

domination. Then the individuals in P0 are ranked: 1 is the best level, 2 is the next-best level, and so on. 
Then P0 is sent to selection, recombination, and mutation operators to create offspring population Q0 of 

size N. 

2.  At t-th generation, a combined population Rt =Pt U Qt of size 2N is formed and is sorted according to 
non-domination. Then individuals in Rt are divided into the best non-dominated set F1, the next-best non-

dominated set F2 and so on. If the size of F1 is smaller than N, all members of F1 go to Pt+1, with the 

remaining members chosen from F2, F3 .. until the size of Pt+1 is N. Then new population Pt+1 are sent to 

selection, crossover, and mutation operators to create a new population Qt+1 of size N. 
3.  Termination: the procedure terminates when convergence criterion is met. 

 

3.3 Fuel cell optimization 
In the study of the solid oxide high temperature fuel cell, we conduct two kinds of studies: we perform a 

single-objective optimization to maximize the output power, leaving the temperature, the cathode and 

anode pressures and the mass fraction of the hydrogen and oxygen as optimization parameters. We then 
perform a multi-objective optimization to maximize the power and minimize the pressures on the 

cathode and anode, from which we obtain a Pareto-front set of solutions.  

In the case of the low temperature fuel cell, we use only the single-objective optimization algorithm in 

order to maximize the power.  
The boundaries of each optimization variable are described in Tables 4 and 5. We define a new function 

called imax(T) for the high temperature fuel cell. This function yields the non-trivial value of the current 

density for which the power density is zero. It is an analogy for the maximum current density which 
defines the concentration over-potential of the low temperature fuel cell. 

 

Table 4. SOFC optimization parameters 

 

Variable Lower bound Upper bound 

Temperature [K] 900     1300 

Cathode pressure [Pa] 10
5 

3 x 10
5
 

Anode pressure [Pa] 10
5
 3 x 10

5
 

O2 mass fraction [ - ] 0.1 1 

H2 mass fraction [ - ] 0.1 1 

Current density [A/cm²] 0 imax(T) 

 

Table 5. PEMFC optimization parameters 

 

Variable Lower bound Upper bound 

Temperature [K] 300     370 

Oxygen pressure [atm] 0.21
 

3 

Hydrogen pressure [atm] 1 3 
Current density [A/cm²] 0 imax 

Humidifying coefficient 14 24 

Cathode pressure [atm] 1 3 

 
 

5. Results and discussion 
The fuel cell models were coded in MATLAB for prior analysis and then implemented in a Java-based 

multi-objective genetic algorithm which was used for optimization, using the Kursawe problem [18] as a 

reference. 

 
5.1 Optimization of the high temperature fuel cell 

It is important to first analyze the behavior of the fuel cell model prior to optimization. Figure 10 shows 

the behavior of the solid oxide fuel cells for anode and cathode pressures of 3x10
5
 Pa and mass fractions 

of oxygen and hydrogen of 0.97. From this simulation, it is clear that a pattern emerges from which we 

can guess that the optimum temperature will be 1300K. 
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From Figure 11, it is also possible to see the influence of each kind of loss in the output voltage. The 

activation over-potential quickly drags the potential down for lower temperatures, while for higher 
temperatures it is possible to see some linearity and thus the influence of the ohmic loss. In none of them, 

however, the concentration over-potential is significant. 
 

 
 

Figure 10. Power density as a function of current density for given temperatures 
 

 
 

Figure 11. Output voltage as a function of the current density for given temperatures 



International Journal of Energy and Environment (IJEE), Volume 4, Issue 5, 2013, pp.721-742 

 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2013 International Energy & Environment Foundation. All rights reserved. 

734 

We proceed with the optimization. First, we perform a single-objective optimization to simply maximize 

the power. The optimized value of each design variable is shown in Table 6. The optimum temperature, 
as expected, is the upper bound 1300K and so are the cathode and anode pressures and the O2 mass 

fraction. The boundary of the H2 mass fraction, however, is not active and thus it assumes a value 

different from the upper bound. This result confirms the need of research in better water management 
systems for fuel cells, because the H2O mass fraction fights with the H2 mass fraction for the optimum 

value. 

Next, we obtain a set of solution for some given values of temperature and thus optimize them for the 

maximum power. The boundaries of the cathode and anode pressures and of the temperature remain 
active, but the hydrogen mass fraction as well as the current density optimum value change. Figures 12, 

13 and 14 show this analysis. It is interesting to note however that the model predicts the optimum power 

to grow very fast at very high temperatures, but manufacturing of fuel cells that resist such temperature 
without cracking and with sufficiently good water management is still very vague. Figure 13 shows the 

same pattern for current density. The importance of water management also appears again in Figure14, 

which shows that in order to maintain maximum performance, the water fraction needed also increases 

with temperature (because 𝑥𝐻2𝑂 = 1 − 𝑥𝐻2
). 

 
 

Table 6. SOFC optimum values 

 

Variable Optimum 

Temperature [K]     1300 

Cathode pressure [Pa] 3 x 10
5
 

Anode pressure [Pa] 3 x 10
5
 

O2 mass fraction [ - ] 1 
H2 mass fraction [ - ] 0.733789 

Current density [A/cm²] 4.3088 

Power [W/cm²] 1.94855 

 
 

 
 

Figure 12. Optimum power density as a function of temperature 
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Figure 13. Optimum current density as a function of temperature 

 

 
 

Figure 14. Optimum hydrogen mass fraction as a function of temperature 
 
 

We now proceed to the multi-objective optimization in order to not only maximize power, but also to 

minimize the cathode and anode pressure. Even though the maximum power is obtained nonetheless 
when the cathode and anode pressures assume their upper bound value, the algorithm produces a Pareto-
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front set of solutions which are plotted over the maximum power solution in Figure 15. This set of 

solutions provide many good points for an excellent performance while maintaining the pressures 
sufficiently low. For example, the Pareto-front has a solution for which both the pressures of cathode and 

anode are atmospheric. In this solution, the temperature and oxygen mass fraction remain boundary-

active, they assume the values of the upper bound, the hydrogen mass fraction is 0.7247 and the power 
output is 0.8769 W/cm at a current density of 3.019 A/cm

2
. 

 

 
 

Figure 15. Plot of Pareto-front solutions 

 
 

From the solution shown in Figures 12 and 13, we can determine the efficiency of the fuel cell when 

operating at its optimum condition and compare with the reversible efficiency in Figure 4. 

We first determine the rate of hydrogen atom transfer 𝑧 and then use it to determine the efficiency: 
 

𝑧 =
𝑖

𝑛𝐹
 (36) 

 

Thus the efficiency is given by: 
 

𝑒𝑟𝑒𝑎𝑙 =
𝑃

−𝑧Δ𝑕
 (37) 

 

As shown in Figure 16, even though the reversible efficiency of the fuel cell decreases with temperature, 
the efficiency of the real fuel cell increases and is much smaller than the reversible one.  

 

5.2 Optimization of the low temperature fuel cell 

Similar to what was done with the high temperature fuel cell, we analyze the model before optimizing. 
Figure 17 shows the power density as a function of the current density for several temperatures with the 

oxygen pressure fixed at 0.21 atm and hydrogen pressure fixed at 1 atm. The same pattern observed with 

the SOFC is also observed here: the maximum power tends to increase with the temperature. However, 
the output power and the working current density are obviously much lower than in the high temperature 

fuel cell. Figure 18 shows the influence of each loss. These are much more visible in the low temperature 
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fuel cell due to the evidence of a concentration over-potential limiting the current density by taking the 

power to zero. 
 

 
 

Figure 16. Efficiency of the reversible and real fuel cells 
 

 
 

Figure 17. Power density as a function of current density for several temperatures 
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Figure 18. Output voltage as a function of current density for several temperatures 

 
We proceed with the single-objective optimization. We perform optimization for the pressures of oxygen, 

hydrogen, temperatures and humidification coefficient 𝜆. We then leave the oxygen pressure at 21% of 

the cathode pressure and optimize the parameters; this setup is analogous to saying we are using 
atmospheric air (only compressed, if necessary). 

Tables 7 and 8 show the optimum values obtained by two single-objective optimizations and thus it is 

noticeable that the control over the oxygen pressure is more desirable than the control of the cathode 

pressure, as if one is able to control the oxygen, it has influence on the fuel cell reaction itself. 
 

Table 7. PEMFC optimum values (pure oxygen at 1 atm cathode pressure) 

 

Variable Optimum 

Temperature [K]     370 

O2 pressure [atm] 0.6853 

H2 pressure [atm] 3 
Humidifying coefficient [ - ] 24 

Current density [A/cm²] 1.8125 

Power [W/cm²] 1.2016 

 
 

Table 8. PEMFC optimum values (atmospheric air) 
 

Variable Optimum 

Temperature [K]     370 

O2 pressure [atm] 0.63 
H2 pressure [atm] 3 

Cathode pressure [atm] 3 

Humidifying coefficient [ - ] 24 
Current density [A/cm²] 1.7842 

Power [W/cm²] 1.1138 
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We now solve the optimization algorithm for various temperatures and create a profile, like in the SOFC 

case. This graph is shown in Figure 19. 
We calculate the efficiency of the real fuel cell and compare it to the reversible fuel cell. As shown in 

Figure 20, just like the SOFC case, even though the reversible efficiency decreases with temperature, the 

real efficiency increases and even though is higher than the efficiency of the SOFC, it is still very low. 
 

 
 

Figure 19. Optimum power and current density as a function of temperature 

 

 
 

Figure 20. Reversible and real fuel cell efficiencies 
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6. Recommendations and conclusions 

In this study, we made several contributions to the state of art in fuel cell modeling. First, we have shown 
a Pareto-front of plausible parameters for a better design of a fuel cell. We took into consideration the 

minimization of the pressure applied to the fuel cell, which should reduce stresses in the membrane that 

cause cracks. We have also shown that even if the efficiency of a high temperature fuel cell is lower than 
a low temperature fuel cell, its power output is still likely to be higher. We have shown that the multi-

objective genetic algorithm is a powerful tool for design. Additionally, we have analyzed the optimum 

points of a fuel cell. 

There is much work that needs to be done. The water management is a big problem in the fuel cell 
performance; further research in this area is needed. This paper has addressed the optimization and 

performance of a single fuel cell; the methodology should be extended to a stack of fuel cells.  
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