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Abstract 
The performance of an air-standard rectangular cycle with heat transfer loss and variable specific heats of 
working fluid is analyzed by using finite-time thermodynamics. The relations between the work output 
and the compression ratio, between the efficiency and the compression ratio, and the optimal relation 
between work output and the efficiency of the cycle are derived by detailed numerical examples. 
Moreover, the effects of heat transfer loss and variable specific heats of working fluid on the cycle 
performance are analyzed. The results show that the effects of heat transfer loss and variable specific 
heats of working fluid on the cycle performance are obvious. The results may provide some guidelines 
for the application of the rectangular cycle. 
Copyright © 2015 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
The application of Finite-time Thermodynamics [1-7] in performance analysis and optimization of 
thermal engine has achieved series of results. Rubin [8] defined the endoreversible cycle model earliest. 
Mozurkewich et al. [9] and Hoffman et al. [10] derived the optimal motion of the piston by using finite 
time thermodynamics and optimal control theory. Chen et al. [11] modeled the Diesel cycle with friction 
loss and studied the effect of friction loss on cycle performance. Klein et al. [12] and Chen et al. [13, 14] 
studied the performance of Diesel cycle and Otto cycle with heat transfer loss, and analyzed the effect of 
heat transfer loss on the performance. Al-Hinti et al. [15] studied the performance of Diesel cycle by 
using different heat transfer model. Qin et al. [16] and Ge et al. [17] derived the performance 
characteristics of Diesel cycle with friction loss and heat transfer loss. The works mentioned above were 
performed without considering the variable specific heats of the working fluid. Ghatak and Chakraborty 
[18] analyzed the performance of Dual cycle by considering the effect of heat transfer loss and variable 
specific heats of working fluid. Chen et al. [19] studied the performance characteristics of an irreversible 
Dual cycle with friction loss and linear variable specific heats of working fluid. Ge et al. [20-22] studied 
the performance of endoreversible and irreversible Otto cycle and Diesel cycle with variable specific 
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heats of the working fluid. Chen et al. [23] modeled a class of universal heat engine cycle with friction 
loss and heat transfer loss by considering the effect of variable specific heats of working fluid. 
Rectangular cycle consists of four processes: an isochoric and an isobaric heat addition process, an 
isochoric and an isobaric heat rejection process. Ferreira Da Silva [24] derived the power output and the 
efficiency of rectangular cycle by using classical thermodynamics. Liu et al. [25] modeled endoreversible 
rectangular cycle with heat transfer loss and studied the performance characteristics of the cycle. Liu et 
al. [26] modeled irreversible rectangular cycle with friction loss and heat transfer loss by using finite 
time thermodynamics, and analyzed the effect of friction loss and heat transfer loss on cycle 
performance. Based on Refs. [24-26], this paper will study the performance characteristics of 
endoreversible rectangular cycle with heat transfer loss and variable specific heats of working fluid. 
 
2. Cycle model 
An air standard rectangular cycle is shown in Figure 1. The heat additions are an isochoric process 1-2 
and an isobaric process 2-3; the heat rejections are an isochoric process 3-4 and an isobaric process 4-1. 
 

  
(a) P-V diagram of the cycle model (b) T-S diagram of the cycle model 

 
Figure 1. Endoreversible rectangular cycle model 

 
The specific heats of working fluid are variable in practical cycle, and the performance of the cycle is 
affected greatly by the variation. According to Refs. [20, 24], it can be supposed that the specific heats of 
the working fluid are only related to its temperature, and over the temperature ranges generally 
encountered for gases in heat engines (300-2200K), the specific heats show a linear relationship with the 
temperature, which may be closely approximated in the following forms: 
 
C pm pa kT= +  (1) 
 

vmC vb kT= +  (2) 
 
where pa , vb  and k  are constants. According to the relation between pmC  and vmC  
 

pm vm p vR C C a b= − = −  (3) 
 
where R  is the molar gas constant of the working fluid. 
The heat added to unit mass of working fluid per cycle may be written as  
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The heat rejected from unit mass of working fluid per cycle may be written as 
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∫ ∫
 (5) 

 
The work output of the cycle is 
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 (6) 

 
According to the ideal gas equation pV nRT= , one has  
 

3 2 3 2/ /V V T T=  (7) 
 

4 1 4 1/ /V V T T=  (8) 
 
The compression ratio is defined as 3 2/V Vγ = , therefore 
 

3 2T Tγ=  (9) 
 

4 1T Tγ=  (10) 
 

2 2 2
v 2 1 2 2 1( ) ( 1) 0.5 ( )in pQ b T T a T k T Tγ γ= − + − + −  (11) 

 
2 2 2

v 2 1 1 2 1( ) ( 1) 0.5 ( )out pQ b T T a T k T Tγ γ γ= − + − + −  (12) 
 

2 1( 1)( )W R T Tγ= − −  (13) 
 
There are no losses in an ideal rectangular cycle, but the heat transfer loss can not be ignored in an 
endoreversible rectangular cycle. One can assume that the heat transfer loss through the cylinder wall is 
proportional to the temperature difference between the working fluid and the atmosphere, and that the 
wall temperature is a constant at 0T . One has the heat added to unit mass of working fluid by combustion 
as the following relation [14-16]. 
 

1 3 2 1( ) ( )inQ T T T Tα β α β γ= − + = − +  (14) 
 
where α  and β  are two constants related to the combustion and heat transfer. 
The efficiency of the cycle is 
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When γ  and 1T  are given, 2T  can be obtained from Eq. (11) and Eq. (14). 
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Defining 
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= + ( 1)+v pA b a γ βγ−  (17) 
 

2
1 1 1= +0.5 +vB b T kT Tα β−  (18) 

 
The work output and the efficiency of the cycle are as follows: 
 

2 2

12

+ +2
( 1)( )

A A k B
W R T

k
γ

γ
γ

−
= − −  (19) 

 
2 2

2 2 2 2 2 2 2 2 2 2
1 1

( 1)( +2 )

[ ( 1)]( +2 ) + +2 0.5v p v

R A k B A

b a A k B A A k B A A k B b k T k T

γ γ
η

γ γ γ γ γ γ

− −
=

+ − − + − − −
 (20) 

 
3. Numerical examples and discussion 
According to Refs. [14, 20], ranges of parameters are as follows: 1.0 10.0γ = − , 60000 70000 /J molα = − , 

20 30 /J mol Kβ = − ⋅ , 20.003844 0.009844 /k J mol K= − ⋅ , 19.868 23.868 /vb J mol K= − ⋅ , 1 300 400T K= − . 
Using the above ranges of parameters, the characteristics curves of W γ− , η γ− , and W η−  are plotted 
as in Figures 2-14. 
Figures 2-13 show the effects of different parameters on cycle performance when 1 =300T K . One can see 
that the work output versus compression ratio characteristics and the efficiency versus compression ratio 
characteristics are parabolic curves, and the work output versus efficiency is loop shaped. 
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Figure 2. The influence of α  on cycle work output 
 

Figure 3. The influence of α  on cycle efficiency 
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Figure 4. The influence of α  on cycle work output 
versus efficiency 

 
Figure 5. The influence of β  on cycle work output 

 



International Journal of Energy and Environment (IJEE), Volume 6, Issue 1, 2015, pp.73-80 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2015 International Energy & Environment Foundation. All rights reserved. 

77

1 1.5 2 2.5 3 3.5 4 4.5
0

0.02

0.04

0.06

0.08

0.1

0.12
=65000 /J molα

=20 /J mol Kβ ⋅

=30 /J mol Kβ ⋅
=25 /J mol Kβ ⋅

=19.868 /vb J mol K⋅
2=0.005844 /k J mol K⋅

γ

η

 0 0.02 0.04 0.06 0.08 0.1
0

500

1000

1500

2000

2500

3000

3500

=65000 /J molα =20 /J mol Kβ ⋅

=30 /J mol Kβ ⋅

=25 /J mol Kβ ⋅

=19.868 /vb J mol K⋅
2=0.005844 /k J mol K⋅

η

/(
/

)
W

J
m

ol

 
Figure 6. The influence of β  on cycle efficiency 

 
Figure 7. The influence of β on cycle work output 

versus efficiency 
 

Figures 2-7 show the effects of combustion and heat transfer. α  is a parameter related to the combustion 
and it reflects the heating value of the fuel. β  is a parameter related to heat transfer loss. In this case, 
when α  increases about 16.75%, the maximum work output increases about 32.73%, the efficiency at 
maximum work output increases about 7.52%, the compression ratio at maximum work output increases 
about 6.95%; the maximum efficiency increases about 7.51%, the work output at maximum efficiency 
increases about 32.75%, the compression ratio at maximum efficiency increases about 7.10%. And when 
β  decreases about 33.3%, the maximum work output increases about 53.37%, the efficiency at 
maximum work output increases about 11.60%, the compression ratio at maximum work output 
increases about 10.27%; the maximum efficiency increases about 11.47%, the work output at maximum 
efficiency increases about 53.43%, the compression ratio at maximum efficiency increases about 
10.50%. 
Figures 8-10 show the effects of pa  and vb  on cycle performance. From Eqs. (1) and (2), one can see that 
when =0k , pm pC a= and vm vC b= , pa and vb  are constant specific heats of working fluid. Because 

= =pm vm p vR C C a b R= − = − constant, pa and vb  must change synchronously. The results show that the 
maximum work output and the maximum efficiency of the cycle will decrease with the increases of 

pa and vb , and the values of compression ratios at maximum work output point and maximum efficiency 
point will decrease too. Furthermore, when vb  increases about 20.13%, the maximum work output 
decreases about 9.57%, the efficiency at maximum work output decreases about 14.26%, the 
compression ratio at maximum work output decreases about 2.06%; the maximum efficiency decreases 
about 14.24%, the work output at maximum efficiency decreases about 9.58%, the compression ratio at 
maximum efficiency increases about 2.10%. 
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Figure 8. The influence of vb  on cycle work output 
 

Figure 9. The influence of vb  on cycle efficiency 
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Figures11-13 show the effect of k  on cycle performance. The degree of variation of specific heats with 
temperature will be acute when k  increases. One can see that the maximum work output and the 
maximum efficiency of the cycle will decrease with the increase of k , and the values of compression 
ratios at maximum work output point and maximum efficiency point will decrease too. Here, when k  
increases about 156%, the maximum work output decreases about 10.81%, the efficiency at maximum 
work output decreases about 16.37%, the compression ratio at maximum work output decreases about 
2.05%; the maximum efficiency decreases about 16.35%, the work output at maximum efficiency 
decreases about 10.78%, the compression ratio at maximum efficiency decreases about 1.57%. 
Figure 14 show the relationship between the work output and the efficiency of the cycle in different 
initial temperature 1T . One can see that the maximum work output and the maximum efficiency of the 
cycle will decrease with the increase of 1T . Furthermore, when 1T  increases about 33.33%, the maximum 
work output decreases about 27.14%, the efficiency at maximum work output decreases about 19.04%, 
the compression ratio at maximum work output decreases about 12.89%; the maximum efficiency 
decreases about 19.12%, the work output at maximum efficiency decreases about 28.12%, and the 
compression ratio at maximum efficiency decreases about 12.10%. 
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Figure 10. The influence of vb  on cycle work 
output versus efficiency 

 
Figure 11. The influence of k  on cycle work 

output 
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Figure 12. The influence of k  on cycle efficiency 
 

Figure 13. The influence of k  on cycle work 
output versus efficiency 

 
4. Conclusion 
In this paper, an air-standard rectangular cycle with heat transfer loss and variable specific heats of 
working fluid is analyzed by using finite-time thermodynamics. The analytical functions of the work 
output and the efficiency are derived, and the performance characteristics of the cycle are obtained by 
detailed numerical examples. The results show that the effects of heat transfer loss and variable specific 



International Journal of Energy and Environment (IJEE), Volume 6, Issue 1, 2015, pp.73-80 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2015 International Energy & Environment Foundation. All rights reserved. 

79

heats of working fluid on the cycle performance are obvious. The results may provide some guidelines 
for the application of the rectangular cycle. 
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Figure 14. The influence of 1T  on cycle work output versus efficiency 
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