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Abstract 
On the basis of a generalized model of irreversible thermal Brownian refrigerator, the Onsager 
coefficients and the analytical expressions for maximum coefficient of performance (COP) and the COP 
at maximum cooling load are derived by using the theory of linear irreversible thermodynamics (LIT). 
The influences of heat leakage and the heat flow via the kinetic energy change of the particles on the LIT 
performance of the refrigerator are analyzed. It is shown that when the two kinds of irreversible heat 
flows are ignored, the Brownian refrigerator is built with the condition of tight coupling between fluxes 
and forces and it will operate in a reversible regime with zero entropy generation. Moreover, the results 
obtained by using the LIT theory are compared with those obtained by using the theory of finite time 
thermodynamics (FTT). It is found that connection between the LIT and FTT performances of the 
refrigerator can be interpreted by the coupling strength, and the theory of LIT and FTT can be used in a 
complementary way to analyze in detail the performance of the irreversible thermal Brownian 
refrigerators. Due to the consideration of several irreversibilities in the model, the results obtained about 
the Brownian refrigerator are of general significance and can be used to analyze the performance of 
several different kinds of Brownian refrigerators. 
Copyright © 2015 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
In macroscopic systems, thermal fluctuations are not directly observable and their influences on the 
system can be ignored. However, when the system is small enough, thermal fluctuations become the 
major driving force of the system and can no longer be ignored. Brownian motor is a typical device 
which can rectify thermal fluctuations to produce directed motion [1-4]. Nowadays, people are trying to 
invent miniature and nanoscale devices which help to utilize energy resources in the microscopic scale. 
And the Brownian motor systems have attracted much interest due to their importance in achieving 
microscopic energy conversion. Actually, as to the Brownian motors, there are a variety of 
nonequilibrium driving forces besides the thermal fluctuations, such as external modulation of an 
underlying potential [5, 6], external force [7-9], chemical potential differences [10, 11] and so on. So far, 
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thermal Brownian motor is the most extensively studied one among the different kinds of Brownian 
motors. 
In the analyses of thermal Brownian motors, the thermodynamics performance is an important factor 
which has been analyzed by many authors [1, 12-15]. And the central issues as to the thermodynamics 
performance are the mechanism and efficiency of energy conversion of the Brownian motor systems. By 
noting the fact that the strict thermodynamic definition of efficiency is external load-dependent and is not 
adequate for microscopic energy conversion systems, Derényi et al. [16] proposed a load-independent 
new definition of generalized efficiency for the microscopic engines and analyzed its application to a 
Brownian heat engine. Meanwhile, many researchers are focusing on the efficiency performance of 
Brownian motors following the classical thermodynamics theory [13, 17-22]. 
In the past decades, the theory of finite time thermodynamics (FTT) has made tremendous progresses in 
the performance analyses of conventional macroscopic and quantum energy conversion systems [23-34]. 
Optimum performance and the transmission losses between the heat reservoirs in energy conversion 
systems are two major consideration factors in FTT. Parrondo and de Cisneros [35] pointed out that the 
strategies and principles developed in FTT theory are also valuable for the studies of Brownian motors. 
So far, the FTT theory has already been applied to analyze performance of Brownian motor systems, 
such as thermal Brownian heat engines, refrigerators and heat pumps [14, 36-42], and many significant 
results have been obtained. 
Linear irreversible thermodynamics (LIT) is a powerful tool for studying the performance of linear 
processes and coupled phenomena, such as thermodiffusion, thermoelectric and thermomagnetic effects 
[43, 44]. In a long time, the LIT theory is limited to study the performance of isothermal energy 
conversion systems. Recently, Van den Broeck [45] derived the efficiency at maximum power of a heat 
engine using the LIT theory, and found that the efficiency at maximum power is equal to Novikov-
Chambadal-Curzon-Ahlborn (NCCA) efficiency which is one of the most important results obtained in 
FTT [46-48]. In the derivation of NCCA efficiency in FTT, an endoreversible approximation was used. 
However, Van de Broeck had shown that in the frame of LIT theory, NCCA efficiency is a fundamental 
result obtained without approximation. Van den Broeck’s work [45] also paves the way for analyzing the 
nonisothermal heat engines using the theory of LIT. Later, Jiménez de Cisneros et al. [49] extended the 
proposal of Van den Broeck [45] to refrigeration cycle and derived the coefficient of performance (COP) 
at maximum cooling load which could be equivalent to the NCCA efficiency by using the theory of LIT. 
At the same time, some research work has been carried out for conventional energy conversion systems 
within the realm of LIT, e.g., see Refs. [50-52]. 
Recently, due to its great significance in revealing the performance characteristic of energy conversion 
systems, the LIT theory has already been extended to the studies of Brownian motor systems. Van den 
Broeck and Kawai [53] first calculated the heat flow for an exactly solvable microscopic Brownian 
refrigerator model by using LIT and compared it with the results of molecular dynamics simulations. 
Gomez-Marin and Sancho [54] analyzed the tight coupling in a thermal Brownian motor and discussed 
the model acting as a refrigerator. They calculated the Onsager coefficients and showed how the 
reciprocity relation holds and that the determinant of the Onsager matrix vanishes. Gao et al. [55] 
calculated the Onsager coefficients and generalized efficiency of a thermal Brownian motor and 
discussed the influences of the main parameters on the performance of the system. Gao and Chen [56] 
later derived the Onsager coefficients and calculated the efficiency at maximum power of an irreversible 
thermally driven Brownian motor. 
However, so far the LIT performance analysis for the Brownian motor systems mainly focuses on the 
system operating as a heat engine and the LIT performance of irreversible thermal Brownian refrigerators 
have been rarely investigated. Therefore, in this paper, a further step will be taken to analyze in detail the 
LIT performance of a thermal Brownian refrigerator. On the basis of a generalized irreversible thermal 
Brownian refrigerator model [42], the Onsager coefficients are derived, and the maximum COP as well 
as the COP at maximum cooling load of the refrigerator are analytically calculated. It is found that the 
heat leakage and the heat flow via the kinetic energy change have great influences on the performance of 
the refrigerator and when the two kinds of heat flows are not considered, the refrigerator becomes a 
perfectly coupled system. Moreover, the LIT performance of the refrigerator are compared with the FTT 
performance, and it is shown that theory of LIT and FTT can be used in a complementary way to analyze 
in detail the performance of the irreversible thermal Brownian refrigerators. 
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2. Performance characteristics and parametric optimum criteria of a Brownian [42] 
A model of a generalized irreversible thermal Brownian refrigerator is shown in Figure 1 [42]. The 
refrigerator is modeled as moving Brownian particles in a viscous medium which is alternately in contact 
with a hot heat reservoir (at temperature HT ) and a cold heat reservoir (at temperature CT ) along the 
space coordinate. Additionally, a periodic sawtooth potential and an external force F  are applied to the 
particles. In the figure, x  is the horizontal axis of the coordinate, N+  and N−  are the numbers of forward 
and backward jumps per unit time, 1L  and 2L  are the widths of the left and right parts of the potential, 
and 0U  is the barrier height of the potential. 
 

 
 

Figure 1. Schematic diagram of a thermal Brownian refrigerator 
 
In the present model, both the irreversibility of heat leakage between two heat reservoirs and the 
irreversible heat flow via the change of kinetic energy of particles are considered. According to Refs. 
[42, 57], the rates of total heat absorbed from the cold reservoir ( CQ ) and released to the hot reservoir 
( HQ ) of the Brownian refrigerator can be given by 
 

0 1( )( ) ( ) ( ) 2 ( )C B H C i H CQ N N U FL k N N T T C T T+ − + −= − − − + − − −  (1) 
 

0 2( )( ) ( ) ( ) 2 ( )H B H C i H CQ N N U FL k N N T T C T T+ − + −−= − + − + − − −  (2) 
 
where Bk  is the Boltzmann’s constant and it is taken to be unity for simplicity in the following 
calculations, iC  is the coefficient of heat leakage, 0 1(1 )exp[ ( ) ( )]B CN t U FL k T+ = − −  and 

0 2(1 )exp[ ( ) ( )]B HN t U FL k T− = − +  are the numbers of forward and backward jumps for the Brownian 
particles per unit time with t  a proportionality constant. The derivation of N+  and N−  is based on the 
assumption that the system is in a stable flow state and the rates of both forward and backward jumps are 
proportional to the corresponding Arrhenius’ factor [57]. 
The heat flows between the two heat reservoirs defined by Eqs. (1) and (2) consist of three parts, 
respectively. The first is the heat flow caused by the particles’ moving through the potential barrier, as 
shown by the first item in the right hand side of Eqs. (1) and(2). The second is the heat flow via the 
change of kinetic energy due to the particles’ recrossing the boundary between the two regions, as shown 
by the second item in the right hand side of Eqs. (1) and (2). The influence of this kind of heat flow on 
the performance of Brownian motor systems was first considered by Derényi and Astumian [17] and 
Hondou and Sekimoto [18], and was later analyzed by many authors [14, 20-22, 38-41]. The last kind is 
the heat leakage between the two reservoirs, which is similar to the bypass heat leakage in conventional 
macroscopic heat engines and refrigerators [58, 59]. Velasco et al. [57] first considered the heat leakage 
in a Feynman’s ratchet. Later this factor was extended to the studies of several kinds of thermal 
Brownian motors [41, 42, 55, 56].  
In order to show more clearly the configuration of the system, the thermodynamic representation for the 
generalized model of irreversible thermal Brownian refrigerator is shown Figure 2, where P  is the 
power input into the system, LQ  is the heat leakage between the two heat reservoirs, 1Q  and 2Q  are, 
respectively, the rates of heat absorbed from the cold reservoir and released to the hot reservoir by the 
system and are defined as 1 0 2( )( ) ( ) ( ) 2B H CQ N N U FL k N N T T+ − + −−= − + − + −  and 

2 0 1( )( ) (BQ N N U FL k N+ − += − − −  ) ( ) 2H CN T T−+ − . 
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Figure 2. Thermodynamic representation for the generalized irreversible thermal Brownian refrigerator 
model 

 
3. Onsager coefficients for the thermal Brownian refrigerator 
According to the second law of thermodynamics, the entropy generation rate of the system can be 
expressed as 
 

H H C CQ T Q Tσ = −  (3) 
 
Under the external force F , the Brownian particles will move from the cold part to the hot part and the 
refrigerator provides a cooling load CQ  with the power input P . In LIT theory, the sole requirement for 
the definition of thermodynamic forces and associated fluxes is 0σ ≥ . And in the system, the external 
force F  is the source of input power. Thus, one can consider a driving force 1 HX F T=  and a 
thermodynamic flux 1J x= , where x  is a thermodynamically conjugate variable and the dot refers to the 
time derivative [45, 49], so that the power input is 1 1 HP Fx J X T= = . In the cold reservoir, the rate of heat 

CQ  is pumped at the cost of the input power P . Thus the thermodynamic force can be chosen as 

2 1 1H CX T T= −  with the corresponding flux 2 CJ Q= . In the system, it is assumed that the temperature 
difference H CT T T∆ = −  is small compared to HT  or CT  so that the driven force 2X  can be written as 

2
2 HX T T= −∆ . 

In linear response regime, by following the LIT theory, the entropy generation rate can be expressed as 
 

( ) 11 12 1
1 2

21 22 2

,
L L X

X X
L L X

σ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (4) 

 
where ijL  ( , 1, 2i j = ) are the Onsager coefficients. Substituting Eqs. (1) and (2) into Eq. (3) and making 
some simplification following the rules in steady state ( 0F →  and 0T∆ → ) gives 
 

0 0 0

0

( ) ( ) ( )2 2 2 2 2 2
1 2 0

( )2 2
1 2 0

( ) ( ) ( ) ( ) [ ( )

] 2 ( )( )( ) ( )

B H B H B H

B H

U k T U k T U k T
H B H B B H

U k T
i H H H B

e F T L L k t T T e U k t e k T t

C T e F T T T L L U k t

σ − − −

−

= + + ∆ +

+ − ∆ +
 (5) 

 
One can obtain the Onsager coefficients for the Brownian refrigerator by comparing Eq. (5) with Eq. (4) 
 

0 ( ) 2
11 1 2( ) ( )B HU k T

BL e L L k t−= +  (6) 
 

0 0( ) ( )2 2 2
22 0 ( )B H B HU k T U k T

B B H i HL e U k t e k T t C T− −= + +  (7) 
 

0 ( )
12 21 1 2 0( ) ( )B HU k T

BL L e L L U k t−= = − +  (8) 
 
The Onsager coefficients offer a lot of information about the non-equilibrium thermodynamic properties 
of the Brownian refrigerator. It is easily found from Eqs. (6)-(8) that the reciprocity relation 12 21L L=  is 
fulfilled and the diagonal coefficients 11L  and 22L  are always positive. The coefficients 11L  and 12 21L L=  
are independent of the heat leakage and the heat flow via the kinetic energy change of the particle; while 
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22L  is closely dependent on the two kinds of irreversible heat flows. Especially, one can find that the 
relation 2

11 22 12L L L>  holds. This implies that the Brownian refrigerator model is inherently irreversible and 
there exists an entropy generation due to the existence of heat leakage and the heat flow via the kinetic 
energy change. Similar analyses for Brownian heat engine have been carried out in Refs. [54-56]. 
A dimensionless coupling strength q  defined by Van den Broeck [45] can be introduced to analyze the 
non-equilibrium thermodynamics performance of the refrigerator 
 

12

11 22

L
q

L L
=  (9) 

 
By substituting Eqs. (6)-(8) into Eq.(9), one can find that the absolute value of coupling strength q  is 
always smaller than unity. 
If the heat flow via the kinetic energy change is ignored, the coefficient 22L  becomes 
 

0 ( ) 2 2
22 0 ( )B HU k T

B i HL e U k t C T−= +  (10) 
 
Eqs.(6), (8) and (10) can be used to study the performance of a Brownian refrigerator only considering 
the heat leakage. It is similar to the Brownian heat engine model where only heat leakage is considered 
[57]. In this condition, the coupling strength q  is smaller than unity. Similarly, if the heat leakage is 
ignored, the coefficient 22L  becomes 
 

0 0( ) ( )2 2
22 0 ( )B H B HU k T U k T

B B HL e U k t e k T t− −= +  (11) 
 
Eqs.(6), (8) and (11) can be used to study the performance of a Brownian refrigerator only considering 
the heat flow via the kinetic energy change of the particle, which is just the model studied by Lin and 
Chen [38] and Ai et al. [20]. In this condition, the coupling strength q  is also smaller than unity.  
Moreover, if both the heat leakage and the heat flow via the kinetic energy change of the particles are 
ignored, the coefficient 22L  becomes 
 

0 ( ) 2
22 0 ( )B HU k T

BL e U k t−=  (12) 
 
Eqs.(6), (8) and (12) can be used to study the performance of a Brownian refrigerator considering neither 
the heat leakage nor the heat flow via the kinetic energy change of the particle, which is just the model 
considered by Asfaw and Bekele [19] and Gomez-Marin [54]. In this condition, the coupling strength 

1q = , which implies that the relevant relation 2
11 22 12L L L=  is fulfilled and the refrigerator is built with the 

condition of tight coupling between fluxes and forces. The refrigerator operates in a reversible regime 
with zero entropy generation. 
 
4. COP performance analyses 
The LIT theory is based on the assumption of local equilibrium with the following linear relation 
between the fluxes and forces [43, 45] 
 

0 0

0

1 11 1 12 2
( ) ( )2 2

1 2 1 2 0
( ) 2

1 2 1 2 0

[ ( ) ( ) ] ( )

( )[( ) ] ( )

B H B H

B H

U k T U k T
H H B

U k T
H H B

J L X L X

e L L F T e L L U T T k t

e L L L L F T U T T k t

− −

−

= +

= + + + ∆

= + + + ∆

 (13) 

 

0 0

0

2 21 1 22 2
( ) ( ) 2

1 2 0 0
( ) 2 2 2

( ) ( ) [ ( )

]

B H B H

B H

U k T U k T
H B B

U k T
B H i H H

J L X L X

e L L U F T k t e U k t

e k T t C T T T

− −

−

= +

= − + −

+ + ∆

 (14) 

 
The physical meaning of the diagonal coefficients can be obtained from the above two equations [45]. For 

2 0X = , i.e., C HT T=  and 0T∆ = , one can find that 1 11 Hx J L F T= =  0 ( ) 2
1 2( ) ( )B HU k T

H Be L L F T k t−= + , so that 
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11 HL T  is the mobility of the refrigerator system in response to the external force F . For 1 0X = , i.e., 0F = , 
one obtains 2

2 22C HQ J L T T= = − ∆  0 0( ) ( )2 2 2 2
0[ ( ) ]B H B HU k T U k T

B B H i H He U k t e k T t C T T T− −= − + + ∆ , so that 2
22 HL T  is a 

coefficient of thermal conductivity. The reciprocity relation 12 21L L=  describes the cross coupling of the 
system, which has been analyzed in many well-documented cases, such as the Seebeck, Peltier, and Thomson 
effects [43, 44]. 
If the motion of the system halts, i.e., 1 0J x= = , one has 
 

0

0

( ) 2
1 2 0 012 2

1 1( ) 22
11 1 21 2

( ) ( )
( )( ) ( )

B H

B H

U k T
stopH B

U k T
HB

e L L U T T k t U TL X
X X

L T L Le L L k t

−

−

+ ∆ ∆
= − = − = ≡

++
 (15) 

 
where 1

stopX  is the stopping force. The external force stopF corresponding to the stopping force is then  
 

1 0 1 2[ ( )]stop stop
H HF X T U T T L L= = ∆ +  (16) 

 
Using Eqs. (13) and (14), the power input ( P ) and COP ( ε ) of the Brownian refrigerator can be given, 
repectively by 
 

2
1 1 11 1 12 1 2H H HP J X T L X T L X X T= = +  (17) 

 
2

12 1 2 22 2
2

11 1 12 1 2

C C

H C

Q T L X X L X
P T T L X L X X

ε
+

= = −
− +

 (18) 

 
One may note that the expressions for the power input and COP for the Brownian refrigerator are the 
same as those for a conventional microscopic refrigerator [49]. Therefore, it is concluded that in the 
frame of LIT theory, the COP of different refrigerators have a unified expression while the expressions 
for the Onsager coefficients of the refrigerators may be different from each other. 
 
4.1 Maximum COP  
In Eq. (18), for fixed 2X , maximizing the COP with respect to 1X  by setting 1 0d dXε =  yields [49] 
 

2
1 2 22 11 (1 1 )X X L L q q= − + −  (19) 

 
And the maximum COP is 
 

22

2 2 2 22 1 2 2 1 2
C C

max
H C

T qq
T T q q q q

ε
ε = =

− − − + − − +
 (20) 

 

 
Substituting Eqs. (6)-(8) into Eq. (20) yields the analytical expression of maximum COP for the 
generalized irreversible thermal Brownian refrigerator. One may note that when 0q → , 0maxε → ; and 
when 1q → , i.e., both the heat leakage and the heat flow via the kinetic energy change of the particles 
are ignored, the maximum COP maxε  can attain the Carnot value Cε . 
 
4.2 COP at maximum cooling load 
The efficiency at maximum power (for a heat engine), or the COP at maximum cooling load (for a 
refrigerator), is the most important parameter considered in FTT theory. The parameters can also be 
derived using the LIT. The efficiency at maximum power output for a Brownian heat engine in LIT has 
been analyzed in Ref. [56]. The COP at maximum cooling load for the irreversible Brownian refrigerator 
will be discussed in this section. Jiménez de Cisneros et al. [49] showed that in LIT theory the function 

2 2J X  for a refrigerator is equivalent to 1 1J X P∝  for a heat engine. Therefore, the COP at maximum 
cooling load is equivalent to the COP when 2 2J X  is maximized.  
For the Brownian refrigerator, maximizing 2

2 2 12 1 2 22 2J X L X X L X= +  with respect to 2X  for fixed 1X  by 
setting 2 2 2( ) 0d J X dX =  gives 
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2 12 1 22(2 )X L X L= −  (21) 
 

Substituting Eq. (21) into Eq. (18) yields the corresponding COP at maximum cooling load 
 

2 2

22

2 22(2 ) 2(2 )
C C

J X
H C

T qq
T T q q

ε
ε = =

− − −
 (22) 

 

2 2J Xε  is equal to half of the Carnot COP times a q -dependent factor 2 2(2 )q q− . One may further note 
that Eq. (22) shares the same form as the COP at maximum cooling load for a conventional cascade 
refrigerator [49]; and the factor is the same as that for a Brownian heat engine optimized at maximum 
power condition. In the case of tight coupling, i.e., 1q → , the COP at maximum cooling load is exactly 
equal to half of the Carnot COP. 
 
4.3 Discussions 
Comparing Eq. (22) with Eq.(20), one can find that the COP (

2 2J Xε ) at maximum cooling load is always 
smaller than the maximum COP ( maxε ). 
The theory of LIT and FTT can be used in a complementary way to analyze in detail the performance of 
the irreversible thermal Brownian refrigerators. The FTT performance of the generalized irreversible 
thermal Brownian refrigerator has already been extensively analyzed in Ref. [42]. The connection 
between the LIT performance and the FTT performance of the thermal refrigerator can be interpreted by 
the coupling strength q . 
For conventional macroscopic refrigerator, if 1q = , the refrigerator becomes a perfectly coupled system 
in LIT, and meanwhile the coupled system corresponds to an endoreversible refrigerator in FTT where 
the sole irreversibility comes from the finite rate heat transfer [23-27, 60-62]; while for the thermal 
Brownian refrigerator, the perfectly coupled system with 1q =  corresponds to an refrigerator without 
considering the heat leakage and the heat flow via kinetic energy change in FTT where the sole 
irreversibility comes from the particle transport process. 
For conventional macroscopic refrigerator, if 1q < , the refrigerator in LIT corresponds to an irreversible 
refrigerator with internal irreversibility and heat leakage besides the irreversibility of finite rate heat 
transfer; while for the thermal Brownian system, the Brownian refrigerator in LIT with 1q <  
corresponds to an refrigerator considering the heat leakage or the heat flow via kinetic energy change, or 
both of them in FTT besides the irreversibility in the process of particle transport. 
 
5. Conclusions 
Based on a generalized irreversible thermally driven Brownian refrigerator model built in Ref. [42], the 
Onsager coefficients and the analytical expressions for maximum COP and the COP at maximum 
cooling load are derived by using the theory of linear irreversible thermodynamics in this paper. The 
COP performance of the refrigerator are analyzed and it is found that in the frame of LIT, the expressions 
of cooling load and COP of the refrigerator share the same forms as those for a conventional 
macroscopic irreversible refrigerator. The influences of heat leakage and the heat flow via the kinetic 
energy change on the LIT performance of the refrigerator are further analyzed and it is shown that they 
affect not only the COP performance but also the Onsager coefficients of the refrigerator. When the two 
kinds of irreversible heat flow are ignored, the Brownian refrigerator becomes a perfectly coupled 
system. Moreover, the results obtained by LIT theory are compared with those obtained by using the 
FTT theory. It is found that connection of the LIT and FTT performances for the refrigerator can be 
interpreted by the defined parameter, i.e., the coupling strength, and the theory of LIT and FTT can be 
used in a complementary way to analyze in detail the performance of the irreversible thermal Brownian 
refrigerators. The results obtained about the irreversible model are general and can be used to analyze the 
performance of several different kinds of Brownian refrigerators. 
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Nomenclature 
iC  coefficient of heat leakage ( W K ) x  direction of the coordinate 

F  external force Greek symbols 
1 2,J J  thermodynamic fluxes T∆  temperature difference ( K ) 

Bk  Boltzmann’s constant ( J K ) ε  coefficient of performance (COP) 

1 2,L L  lengths of the left and right part of the 
potential 

Cε  Carnot COP 

ijL ( , 1,2i j = ) Onsager coefficients σ  entropy generation rate ( W K ) 
P  power input ( W ) 'Ⅰ ,Ⅰ  cold regions of the ratchet 

Q  rate of heat flow ( W ) ',Ⅱ Ⅱ  hot regions of the ratchet 
q  dimensionless coupling strength Superscripts 
R  cooling load ( W ) stop  stopping force 
T  temperature ( K ) C  cold electron reservoir 
t  a proportionality constant with a time 

dimension 
H  hot electron reservoir 

0U  barrier height of the potential max  maximum value 

1 2,X X  thermodynamic forces ,+ −  forward and backward jumps of Brownian 
particle 
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