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Abstract 
The finite time exergoeconomic performance of an endoreversible Carnot heat engine with a complex 
heat transfer law, including generalized convective heat transfer law and generalized radiative heat 
transfer law, mnTq )(∆∝ , is investigated in this paper. The finite time exergoeconomic performance 
optimization of the engine is investigated by taking profit optimization criterion as the objective. The 
focus of this paper is to search the compromised optimization between economics (profit) and the 
utilization factor (efficiency) for endoreversible Carnot heat engine cycles. The obtained results include 
those obtained in many literatures and can provide some theoretical guidance for the design of practical 
heat engines. 
Copyright © 2011 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Classical thermodynamic processes are based on reversible assumption. However, reversible processes in 
practice are difficult to realize. Finite time thermodynamics [1-10] extends the reversible process to 
include rates constraints. In the analysis and optimization of heat engine cycles, the objective functions 
are often pure thermodynamic parameters including power, efficiency, entropy production, effectiveness, 
cooling load, heating load, coefficient of performance, and loss of exergy. Salamon and Nitzan [11] 
viewed the operation of the endoreversible heat engine as a production process with work as its output. 
They carried out the economic optimization of the heat engine with the maximum profit as the objective 
function [12]. 
A relatively new method that combines exergy with conventional concepts from long-run engineering 
economic optimization to evaluate and optimize the design and performance of energy systems is 
exergoeconomic (or thermoeconomic) analysis [13-18]. Salamon and Nitzan’s work [11] combined the 
endoreversible model with exergoeconomic analysis. It was termed as finite time exergoeconomic 
analysis [19-21] to distinguish it from the endoreversible analysis with pure thermodynamic objectives 
and the exergoeconomic analysis with long-run economic optimization. Similarly, the performance 
bound at maximum profit was termed as finite time exergoeconomic performance bound to distinguish it 
from the finite time thermodynamic performance bound at maximum thermodynamic output. A similar 
idea was provided by Ibrahim et al. [22], De Vos [23, 24] and Bejan [25].  Zheng et al.[26] obtained the 
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maximum exergoeconomic performance of a class of universal steady flow endoreversible heat engine 
cycles with Newton heat transfer law. Chen et al. [27] further obtained the maximum exergoeconomic 
performance of generalized irreversible Carnot engine with Newton heat transfer law.  
However, the heat engine’s exergoeconomic performance is affected by the heat-transfer law [28-30]. 
Chen et al. [28] investigated the endoreversible thermoeconomic performance of heat engine with the 
linear phenomenological heat transfer law )( 1−∆∝ Tq  based on Ref. [23]. Wu et al.[29] derived the finite 
time exergoeconomic performance of an endoreversible Carnot heat engine with generalized radiative 
heat transfer law ( )nq T∝ ∆ . Zhu et al. [30] obtained the finite time exergoeconomic performance of an 
endoreversible Carnot heat engine with generalized convective heat transfer law ( )nq T∝ ∆ . Sahin et al. 
[31-34] provided a new thermoeconomic optimization criterion, thermodynamic output rates (power, 
cooling load or heating load for heat engine, refrigerator or heat pump) per unit total cost, investigated 
the performances of endoreversible heat engine [31], refrigerator and heat pump [32], combined cycle 
refrigerator [33], combined cycle heat pump [34] as well as irreversible heat engine [35], refrigerator and 
heat pump [9, 36], combined cycle refrigerator [37], combined cycle heat pump [38], three-heat-reservoir 
absorption refrigerator and heat pump [39]. 
Recently, Li et al. [40] investigated the fundamental optimal relationship between power output and 
efficiency of the endoreversible Carnot heat engine by using a complex heat transfer law, including 
generalized convective heat transfer law [ ( )nq T∝ ∆ ]  and generalized radiative heat transfer 
law[ ( )nq T∝ ∆ ], ( )n mq T∝ ∆  [10] in the heat transfer processes between the working fluid and the heat 
reservoirs. This paper will extend the previous work to find the optimal exergoeconomic performance of 
the endoreversible Carnot heat engine by using the complex heat transfer law, mnTq )(∆∝ , in the heat 
transfer processes between the working fluid and the heat reservoirs of the heat engine. 
 
2. Endoreversible Carnot heat engine model 
An endoreversible Carnot engine and its surroundings to be considered in this paper are shown in Figure 
l. The following assumptions are made for this model: 
(i). The working fluid flows through the system in a steady-state fashion. The cycle consists of two 
isothermal and two adiabatic processes.  
(ii). Because of the heat resistance, the working fluid temperatures ( HCT  and LCT ) are different from the 
reservoir temperatures ( HT  and LT ). The four temperatures are of the following decreasing order: 

LLCHCH TTTT >>> . The heat transfer obeys a complex heat transfer law mnTq )(∆∝ . The heat transfer 
surface areas ( 1F  and 2F ) of the high- and low-temperature heat exchangers are finite. The total heat 
transfer surface area ( F ) of the two heat exchangers is assumed to be a constant: 21 FFF += . 
(iii). The rate of heat transfer supplied by the heat source is HQ  and the rate of heat transfer released to 
the heat sink is LQ . 
(iv). The heat engine is an endoreversible one, i.e. the only irreversibility of finite rate heat transfer is 
considered. 
 
3. Generalized optimal characteristics 
The endoreversible performance of the cycle requires that 
 

H HC L LCQ T Q T=  (1) 
 
The first law of thermodynamics gives that the power output and the efficiency of the heat engine are 
 

(1 )H L H LC HCP Q Q Q T T= − = −  (2) 
 

1H LC HCP Q T Tη = = −  (3) 
 
Considering that the heat transfer between the heat engine and its surroundings follows a complex law 

mnTq )(∆∝ . Then 
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1 2( ) , ( )n n m n n m
H H HC L LC LQ F T T Q F T Tα β= − = −  (4) 

 
where α is the overall heat transfer coefficient of the high-temperature-side heat exchanger and β  is the 
overall heat transfer coefficient of the low-temperature-side heat exchanger. Defining the heat transfer 
surface area ratio ( f ) and the working fluid temperature ratio ( x ) as follows: 21 FFf = , LCHC TTx = , 
where LH TTx ≤≤1 . From Equations (1)-(4), one can obtain 
 

1
1[ ] (1 )

1 ( )

n n n
mH L

m n

T x TfFP x
f fr x x

α −
−

−

−
= −

+ +
 (5) 

 
1 1 xη = −  (6) 

 
where βα=r . Assuming the environment temperature is 0T  and the rate of exergy input of the heat 
engine is  

0 0 1 2(1 ) (1 )rev H H L L H LA Q T T Q T T Q Qη η= − − − = −  (7) 
 
where HTT01 1−=η  and LTT02 1−=η  are Carnot coefficient of the high- and low-temperature 
reservoirs, respectively. The profit of the heat engine is 
 

1 2 revP Aψ ψΠ = −  (8) 
 
where 1ψ  is the value price of power output, 2ψ  is the value price of exergy input rate. Substituting 
Equations (1)-(5) and (7) into Equation (8), one can obtain 
 

1
2 1 1 21

( ) [1 1 ( )( )]
(1 )[( ) ]

n n n m
H L

m n m

fF T x T x x
f fr x x

ψ α
ψ ψ η η

−

−

−
Π = − − −

+ +
 (9) 

 
Equation (9) indicates that the profit of the endoreversible Carnot heat engine is a function of the heat 
transfer surface area ratio ( f ) for the given HT , LT , 0T , α , β , n , m  and x . Taking the derivatives of 
Π  with respect to f  and setting it equal to zero ( 0=Π dfd ) yields 
 

1 1 ( 1)( )nm m
af x r− +=  (10) 

 
The corresponding profit is 
 

1
2 1 1 21 1 ( 1) 1

( ) [1 1 ( )( )]
[1 ( ) ]

n n n m
H L

mn m m

F T T x x x
x r

ψ α
ψ ψ η η− + +

−
Π = − − −

+
 (11) 

 
From Equations (6) and (11), one can obtain the optimal relation between Π  and η  
 

1
2 1 1 21 1 ( 1) 1

[ (1 ) ] { ( )[ (1 )]}
{1 [(1 ) ] }

n n n m
H L

mn m m

F T T
r

ψ α η
η ψ ψ η η η

η

−

− + +

− −
Π = − − −

+ −
 (12) 

 
 
Equation (12) is the fundamental optimal relation between the profit and the efficiency of the 
endoreversible Carnot heat engine with the heat transfer law of mnTq )(∆∝ . Maximizing Π with respect 
to x  by setting 0x∂Π ∂ =  in Equation (11) directly yields the maximum profit rate and the 
corresponding optimal thermal efficiency oη , that is, the finite-time thermodynamic exergoeconomic 
bound. 
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Figure 1. Endoreversible Carnot heat engine model 
 
4. Discussions 
(1). When 1=m , Equation (12) becomes  
 

1
2 1 1 21 1 2 2

[ (1 ) ]{ ( )[ (1 )]}
{1 [(1 ) ] }

n n n
H L

n

F T T
r

ψ α η
η ψ ψ η η η

η

−

−

− −
Π = − − −

+ −
 (13) 

 
It is the same result as that obtained in Refs. [29]. The profit versus efficiency characteristic is a 
parabolic-like one. If 1=n , it is the result of endoreversible heat engine with Newtownian heat transfer 
law [19, 23, 24, 27, 29, 30]. If 1−=n , it is the result of endoreversible heat engine with linear 
phenomenological heat transfer law [28, 29]. If 4=n , it is the result of endoreversible heat engine with 
radiative heat transfer law [29]. 
(2). When 1=n , Equation (12) becomes 
 

1
1

2 1 1 21 1 ( 1) 1

[ (1 ) ] { ( )[ (1 )]}
{1 [(1 ) ] }

m
H L

m m m

F T T
r

ψ α η
η ψ ψ η η η

η

−

− + +

− −
Π = − − −

+ −
 (14) 

 
It is the same result as that obtained in Refs. [30]. The profit versus efficiency characteristic is also a 
parabolic-like one. If 1=m , it is the result of endoreversible heat engine with Newtownian heat transfer 
law [19, 23, 24, 27, 29, 30]. If 25.1=m , it is the result of endoreversible heat engine with Dulong-Petit 
heat transfer law [41]. 
(3). From Equation (11), it can be seen that besides HT , LT  and 0T , 12 ψψ  also has the significant 
influences on the profit of endoreversible Carnot heat engine. Note that for the process to be potential 
profitable, the following relationship must exist: 10 12 << ψψ , because one unit of power input must 
give rise to at least one unit of exergy output rate. When the price of work output becomes very large 
compared with the price of the exergy input, i.e. 012 →ψψ , Equation (11) becomes 
 

1
11 1 ( 1) 1

( ) (1 1 )
[1 ( ) ]

n n n m
H L

mn m m

F T T x x P
x r

ψ α
ψ− + +

−
Π = − =

+
 (15) 
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That is the profit rate maximization approaches the power maximization, where P  is the power output of the 
endoreversible heat engine cycle [40]. 
When the price of work output approaches the price of the exergy input, i.e. 112 →ψψ , Equation (11) 
becomes 
 

1
1 2 1 01 1 ( 1) 1

( ) [1 1 ( )]
[1 ( ) ]

n n n m
H L

mn m m

F T T x x x T
x r

ψ α
η η ψ σ− + +

−
Π = − − − = −

+
 (16) 

 
where σ  is the rate of entropy production of the heat engine. That is the profit maximization approaches 
the rate of entropy production minimization, in other word, the minimum waste of exergy. Equation (15) 
indicates that the heat engine is not profitable regardless of the thermal efficiency is at which the heat 
engine is operating. Only the engine is operating reversibly will the revenue equal the cost, and then the 
maximum profit will equal zero. The corresponding rate of entropy production is also zero. 
Therefore, for any intermediate values of 2 1ψ ψ , the finite-time exergoeconomic performance bound ( oη ) 
lies between the finite-time thermodynamic performance bound and the reversible performance bound. 

oη  is related to the latter two through the price ratio, and the associated thermal efficiency bounds are the 
upper and lower limits of oη . 
 
5. Numerical example 
To show the profit vs. efficiency characteristic of the endoreversible Carnot heat engine with the 
complex heat transfer law, one numerical example is provided. In the numerical calculations, 

1000HT K= ， 400LT K= , 0 300T K= , )1( == rβα ， 4 mnF W Kα =  and 1 1000 yuan kWψ =  are set. The 
effects of heat transfer laws on relation between the profit and efficiency are shown in Figure 2.  In this 
case, 2 1 0.3ψ ψ =  is set. It shows that the relationship between profit and efficiency of the heat engine is a 
parabolic-like curve. It can be seen that heat transfer law changes the profit versus efficiency relation 
quantitatively and the bigger the value of mn , the smaller the efficiency at maxΠ = Π  point is. 
Figure 3 shows the effects of the price ratio on the profit versus the efficiency for endoreversible heat 
engine, in this case, 4n =  and 1.25m =  are set. It can be seen that the price ratio has the significant 
influence on the relation between the profit and the efficiency and the price ratio changes the profit 
versus efficiency relation quantitatively.  
 

 
 

Figure 2. The effects of heat transfer laws on relation between the profit and efficiency 
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Figure 3. The effects of the price ratio on the profit versus the efficiency 
 

6. Conclusion 
This paper analyzes the exergoeconomic performance of the endoreversible Carnot heat engine with a 
complex heat transfer law, including generalized convective heat transfer law and generalized radiative 
heat transfer law, mnTq )(∆∝ , and obtained the fundamental optimal relation between the profit and the 
efficiency of the endoreversible Carnot heat engine. One seeks the economic optimization objective 
function instead of pure thermodynamic parameters by viewing the heat engine as a production process. 
It is shown that the economic and thermodynamic optimization converged in the limits 012 →ψψ  and 

112 →ψψ . When the profit margin for exergy conversion is small, the maximum profit operation is near 
the minimum loss of exergy operation, while when the work is very cheap compared to the price of 
energy, the maximum profit operation is near the maximum power operation. The obtained results 
include those obtained in many literatures and can provide some theoretical guidance for the design of 
practical heat engines. 
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