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Abstract 
This paper theoretically investigates the unsteady free convective flow of a viscous incompressible 
electrically conducting fluid past an infinite vertical porous flat plate in a porous medium with constant 
suction in presence of a uniform transverse magnetic field. The governing equations of the flow field are 
solved using multi parameter perturbation technique and approximate solutions for velocity, temperature, 
skin friction and rate of heat transfer are obtained. The effects of the various flow parameters 
characterizing the flow field are analyzed with the help of figures and table. It is observed that a growing 
magnetic parameter M or permeability parameter Kp decelerates the transient velocity of the flow field at 
all points, while a growing Grashof number for heat transfer Gr accelerates the transient velocity at all 
points. Further, the effect of growing Prandtl number Pr is to diminish the transient temperature of the 
flow field at all points and on the other hand, the permeability parameter reverses the effect. The 
permeability parameter Kp enhances the skin friction as well as the rate of heat transfer at the wall and 
the magnetic parameter shows the reverse effect. 
Copyright © 2012 International Energy and Environment Foundation - All rights reserved. 
 
Keywords: Hydromagnetic flow; Unsteady; Free convection; Porous medium; Suction. 
 
 
 
1. Introduction 
The problem of unsteady hydromagnetic flow are very often observed in buoyancy induced motions in 
the atmosphere, in bodies of water, quasi-solid bodies such as earth, etc. Such problems through porous 
media over continuously moving flat surfaces are of great theoretical as well as practical interest due to 
their varied applications in aerodynamics, extraction of plastic sheets, cooling of infinite metallic plates 
in a cool bath, liquid film condensation process and in major fields of glass and polymer industries. 
In view of their wide range of applications in diverse fields, Raptis [1] analyzed the unsteady free 
convection flow through a porous medium. Hossain and Begum [2] discussed the effect of mass transfer 
and free convection on the flow past a vertical plate.Vafai [3] reported the convective flow and heat 
transfer in variable porosity media. Bejan and Khair [4] have studied the heat and mass transfer by 
natural convection in a porous medium. Raptis and Perdikis [5] analyzed the unsteady flow through a 
porous medium in the presence of free convection. Singh and Dikshit [6] investigated the hydromagnetic 
flow past a continuously moving semi-infinite plate for large suction. Vajravelu and Hadjinicolaou [7] 
discussed the heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal 
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heat generation. Deka et al. [8] explained the transient free convection flow past an infinite vertical plate 
with temperature-dependent heat source. Attia and Kotb [9] studied the MHD flow between two parallel 
plates with heat transfer. Raptis and Soundalgekar [10] investigated the steady laminar free convection 
flow of an electrically conducting fluid along a porous hot vertical plate in presence of heat source/sink. 
Sattar et al. [11] discussed the free convection flow and heat transfer through a porous vertical flat plate 
immersed in a porous medium. 
Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable 
suction has been studied by Kim [12]. Das et al. [13] approached numerically the effect of mass transfer 
on unsteady flow past an accelerated vertical porous plate with suction.Ogulu and Prakash [14] analyzed 
the heat transfer to unsteady magnetohydrodynamic flow past an infinite vertical moving plate with 
variable suction. Das and his team [15] discussed the effect of induced magnetic field on MHD flow and 
heat transfer in a conducting elastico-viscous fluid past a continuously moving porous flat surface. In a 
separate paper, they [16] analyzed the effect of heat source and variable magnetic field on unsteady 
hydromagnetic flow of a viscous stratified fluid past a porous flat moving plate in the slip flow regime. 
Sharma and Singh [17] reported the unsteady MHD free convective flow and heat transfer along a 
vertical porous plate with variable suction and internal heat generation. Das and his associates [18] 
analyzed the mass transfer effects on MHD flow and heat transfer past a vertical porous plate through a 
porous medium under oscillatory suction and heat source. Recently, Das and Tripathy [19] have 
investigated the effect of periodic suction on three dimensional flow and heat transfer past a vertical 
porous plate embedded in a porous medium.  
The proposed study we analyze the unsteady free convective flow of a viscous incompressible 
electrically conducting fluid past an infinite vertical porous flat plate in a porous medium with constant 
suction and in presence of a uniform magnetic field. Approximate solutions for velocity, temperature, 
skin friction and rate of heat transfer are obtained using multi parameter perturbation technique and the 
effects of the various flow parameters affecting the flow field are discussed with the help of figures and 
table. 
 
2. Formulation of the problem 
We consider the unsteady free convective flow of a viscous incompressible electrically conducting fluid 
past an infinite vertical porous plate in presence of constant suction and transverse magnetic field B0. The 
x′-axis is taken in vertically upward direction along the plate and the y′-axis is normal to it. Neglecting 
the induced magnetic field and the Joulean heat dissipation and applying the usual Boussinesq’s 
approximation, the governing equations of the flow field are given by:  
Continuity equation: 
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Energy equation: 
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where ρ is the density, g is the acceleration due to gravity, σ is the electrical conductivity, ν is the 
coefficient of kinematic viscosity, β is the volumetric coefficient of expansion for heat transfer, ω is the 
angular frequency, η0 is the coefficient of viscosity, k is the thermal diffusivity, T’ is the temperature, T’w 
is the temperature at the plate, T’∞ is the temperature at infinity and Cp is the specific heat at constant 
pressure. 
The boundary conditions of the problem are: 
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Introducing the following non-dimensional variables and parameters, 
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in equations (2)-(3) under boundary conditions (4), we get 
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where M is the magnetic parameter, Gr is the Grashof number for heat transfer, Pr is the Prandtl number, 
Kp is the permeability parameter and Ec is the Eckert number. 
The corresponding boundary conditions are:  
 

tie1T,0u ωε+==  at 0y = ,                                               
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3. Method of solution 
To solve equations (6)- (7), we assume ε  to be very small and the velocity and temperature distribution 
of the flow field in the neighbourhood of the plate as 
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Substituting equations (9) - (10) in equations (6) - (7) respectively, equating the harmonic and non-
harmonic terms and neglecting the coefficients of 2ε , we get 
Zeroth order: 
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First order: 
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The corresponding boundary conditions are  
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Using multi parameter perturbation technique and taking cE <<1, we assume  
 

01000 uEuu c+=                                                                                                                                       (16) 
 

01000 TETT c+=                                                                                                                                       (17) 
 

11101 uEuu c+=                                                                                                                                      (18) 
 

11101 TETT c+=                                                                                                                                       (19) 
Now using equations (16) - (19) in equations (11), (12), (13) and (14) and equating the coefficients of 
like powers of cE  neglecting those of 2

cE , we get the following set of differential equations: 
Zeroth order: 
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The corresponding boundary conditions are, 
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First order: 
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 The corresponding boundary conditions are, 
 

00000 11110101 ===== T,u,T,u:y ; 
0000 11110101 ====∞→ T,u,T,u:y .                                                                                                 (29) 

 Solving equations (20) - (23) subject to boundary condition (24) we get, 
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Solving equations (25)-(28) subject to boundary condition (29), we get 
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3.1 Skin friction 
The skin friction at the wall is given by  
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Now, using equations (9), (16), (18), (30), (32), (36) and (37) in equation (38), we get  
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3.2 Heat flux     
The rate of heat transfer i. e., heat flux at the wall in terms of Nusselt number is given by 
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Using equations (10), (17), (19), (31), (33)-(35) in equation (40), we get  
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4. Results and discussions 
The problem of unsteady free convective flow of a viscous incompressible electrically conducting fluid 
past an infinite vertical porous flat plate in a porous medium with constant suction in presence of a 
uniform transverse magnetic field has been studied. Approximate solutions for velocity, temperature, 
skin friction and rate of heat transfer are obtained using multi parameter perturbation technique and the 
effects of the various flow parameters affecting the flow field are discussed with the help of velocity 
profiles shown in Figures 1-3, temperature profiles shown in Figures 4, 5 and Table1.  
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Figure 1. Transient velocity profiles against y for different values of M with Gr=4, Kp=1, Pr=0.71, 
Ec=0.002, ω=5.0, ε=0.2, ωt=π/2 
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Figure 2. Transient velocity profiles against y for different values of Kp with Gr=4, Ec=0.002, Pr=0.71, 
M=1, ω=5.0, ε=0.2, ωt=π/2 
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Figure 3. Transient velocity profiles against y for different values of Gr with Kp=1, Ec=0.002, Pr=0.71, 
M=1, ω=5.0, ε=0.2, ωt=π/2 
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Figure 4. Temperature profiles against y for different values of Pr with Gr=4, M=1, Kp=1, Ec=0.002, 
ω=5.0, ε=0.2, ωt=π/2 
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Figure 5. Temperature profiles against y for different values of Kp with Gr=4, M=1, Pr =0.71, Ec=0.002, 
ω=5.0, ε=0.2, ωt=π/2 
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Table 1. Variation in the value of skin friction τ and the rate of heat transfer Nu against Kp for different 
values of M with Gr=4, Pr=0.71, Ec=0.002, ε =0.2, ω=5.0, ωt=π/2 

 
M =0 M =2 M = 4 M =10 Kp     

τ Nu τ Nu τ Nu τ Nu 
0.2 7.27274 -0.05907 5.94654 -0.11571 5.42523 -0.20227 4.56435 -0.23462 
1.0 11.67684 1.75293 9.20107 0.58764 6.67837 -0.11364 5.18634 -0.22107 
5.0 13.67578 5.52476 10.40892 1.32563 7.08325 -0.07347 5.38026 -0.213356 
10.0 14.18236 6.87351 10.74237 1.54786 7.20147 -0.06494 5.43273 -0.20943 
 
4.1 Velocity field 
The velocity of the flow field suffers a change in magnitude due to the variation of the flow parameters. 
The flow parameters affecting the velocity field are mainly magnetic parameter M, Grashof number for 
heat transfer Gr and permeability parameter Kp. The effects of these parameters on the velocity of the 
flow field have been discussed with the aid of velocity profiles shown in Figures 1-3. 
Figure 1 depicts the effect of magnetic parameter M on the velocity of the flow field. In the above figure 
curve with M=0 corresponds to the case of non-MHD flow. A close observation of the curves of the 
figure shows that a growing magnetic parameter decelerates velocity of the flow field at all points due to 
the action of the Lorentz force in the flow field. Figure 2 elucidates the effect of permeability parameter 
Kp on the velocity field. The permeability parameter Kp retards the transient velocity of the flow field at 
all points. In Figure 3, we present the effect of Grashof number for heat transfer Gr on the velocity field. 
For cooling of the plate Gr>0, a growing Grashof number for heat transfer accelerates the velocity of the 
flow field at all points due to the action of free convection current in the flow field.   
 
4.2 Temperature field 
The variation in the value of temperature of the flow field is mainly due to change in Prandtl number Pr 
and the permeability parameter Kp. The effects of these parameters are shown in Figures 4 and 5 
respectively. The effect of growing Prandtl number Pr is to decrease the transient temperature of the flow 
field at all points in the flow field while a growing permeability parameter reverses the effect. 
  
4.3 Skin friction and rate of heat transfer 
The value of skin friction τ and the rate of heat transfer Nu at the plate against permeability parameter 
Kp for different values of magnetic parameter M are entered in Table1 keeping other parameters of  the 
flow field constant. The permeability parameter Kp is found to enhance the skin friction at the wall while 
a growing magnetic parameter M shows the reverse effect. The rate of heat transfer at the plate increases 
as the permeability parameter Kp grows in the flow field. On the other hand, the effect of increasing 
magnetic parameter M is to decrease the rate of heat transfer at the wall. 
 
5. Conclusion 
We bring out the following results of physical interest on the velocity, temperature, skin friction and the 
rate of heat transfer at the wall in the flow field from the above study. 
1. A growing magnetic parameter M or permeability parameter Kp retards the transient velocity of the 

flow field at all points.  
2. The Grashof number for heat transfer Gr enhances the transient velocity of the flow field at all points. 
3. The effect of growing Prandtl number Pr is to decrease the transient temperature of the flow field at 

all points in the flow field while a growing permeability parameter reverses the effect. 
4. The permeability parameter Kp enhances the skin friction and the rate of heat transfer at the wall. 
5. The effect of increasing magnetic parameter is to decrease the skin friction and the rate of heat 

transfer at the wall in the flow field. 
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