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Abstract 
A multistage endoreversible Carnot heat engine system operating with a finite thermal capacity high-
temperature black photon fluid reservoir and the heat transfer law [ 4( )( ( ))n nq T Tα −∝ ∆ ] is investigated in 
this paper. Optimal control theory is applied to derive the continuous Hamilton-Jacobi-Bellman (HJB) 
equations, which determine the optimal fluid temperature configurations for maximum power output 
under the conditions of fixed initial time and fixed initial temperature of the driving fluid. Based on the 
general optimization results, the analytical solution for the case with pseudo-Newtonian heat transfer law 
[ 3( )( )q T Tα∝ ∆ ] is further obtained. Since there are no analytical solutions for the radiative heat transfer 
law [ 4( )q T∝ ∆ ], the continuous HJB equations are discretized and the dynamic programming (DP) 
algorithm is adopted to obtain the complete numerical solutions, and the relationships among the 
maximum power output of the system, the process period and the fluid temperatures are discussed in 
detail. The optimization results obtained for the radiative heat transfer law are also compared with those 
obtained for pseudo-Newtonian heat transfer law and stage-by-stage optimization strategy. The obtained 
results can provide some theoretical guidelines for the optimal designs and operations of solar energy 
conversion and transfer systems. 
Copyright © 2012 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
There are two standard problems in finite time thermodynamics [1-12]: one is to determine the objective 
function limits and the relations between objective functions for the given thermodynamic system, and 
another is to determine the optimal thermodynamic process for the given optimization objectives. The 
former case belongs to a class of static optimization problems, which could be solved by the simple 
function derivation methods, while the latter case belongs to a class of dynamic optimization problems, 
which should be solved by applying optimal control theory. Sieniutycz [5, 7, 11, 13-16], Sieniutycz and 
von Spakovsky [17], Szwast and Sieniutycz [18] first investigated the maximum power output of 
multistage continuous endoreversible Carnot heat engine system operating between a finite thermal 
capacity high-temperature fluid reservoir and an infinite thermal capacity low-temperature environment 
with Newtonian heat transfer law [5, 7, 11, 13-15, 17]. The results were extended to the multistage 
discrete endoreversible Carnot heat engine system [5, 7, 11, 16, 18]. Sieniutycz and Szwast [19], 
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Sieniutycz [20] further investigated effects of internal irreversibility on the maximum power output of 
multistage Carnot heat engine system and the corresponding optimal fluid reservoir temperature 
configuration. Li et al [21, 22] further considered that both the high- and low-temperature sides are finite 
thermal capacity fluid reservoirs, and investigated the problems of maximizing the power output of 
multistage continuous endoreversible [21] and irreversible [22] Carnot heat engine systems with 
Newtonian heat transfer law. In general, heat transfer is not necessarily Newtonian heat transfer law and 
also obeys other laws. Heat transfer laws not only have significant influences on the performance of the 
given thermodynamic process [23-27], but also have influences on the optimal configurations of 
thermodynamic process for the given optimization objectives [28-33]. Sieniutycz and Kuran [34, 35], 
Kuran [36] and Sieniutycz [11, 37-40] investigated the maximum power output of the finite high-
temperature fluid reservoir multistage continuous irreversible Carnot heat engine system with the 
radiative heat transfer law and the corresponding optimal fluid reservoir temperature configuration. 
Because there are no analytical solutions for the case with the pure radiative heat transfer law, Refs. [11, 
35-40] obtained the analytical solutions of the optimization problems by replacing the radiative heat 
transfer law by the so called pseudo-Newtonian heat transfer law [ 3( )( )q T Tα∝ ∆ ] approximately, which 
is Newtonian heat transfer law with a heat transfer coefficient 3( )Tα  as a function of the cube of the fluid 
reservoir temperature. Sieniutycz [41] further investigated the maximum power output of multistage 
continuous irreversible Carnot heat engine system with the non-linear heat transfer law [ ( )( )nq T Tα∝ ∆ ], 
i.e. Newtonian heat transfer law with a heat transfer coefficient ( )nTα  as a function of the n-times of the 
fluid reservoir temperature. Li et al. [42] further investigated the problems of maximizing the power 
output of multistage continuous endoreversible Carnot heat engine system with two finite thermal 
capacity heat reservoirs and the pseudo-Newtonian heat transfer law. Xia et al. [43, 44] investigated the 
maximum power output of the multistage continuous endoreversible [43] and irreversible [44] Carnot 
heat engine system with the generalized convective heat transfer law [ ( )mq T∝ ∆ ], and obtained different 
results from those obtained in Refs. [5, 7, 11, 13-22, 34-42]. On the basis of Refs. [5, 7, 11, 13-22, 34-
44], this paper will further investigate the maximum power output of multistage endoreversible Carnot 
heat engine system, in which the heat transfer between the reservoir and the working fluid obeys the heat 
transfer law [ 4( )( ( ))n nq T Tα −∝ ∆ ]. Based on the general optimization results, the analytical solution for 
the case with pseudo-Newtonian heat transfer law ( n 1= ) will be further obtained. While for the case 
with the radiative heat transfer law ( n 4= ), the continuous HJB equations will be discretized and the 
dynamic programming (DP) method will be performed to obtain the complete numerical solutions of the 
optimization problem. 

 
2. System modeling and characteristic description  
2.1 Fundamental characteristic of a single-stage stationary endoreversible Carnot heat engine 
Each infinitesimal endoreversible Carnot heat engine as shown in Figure 1 is assumed to be a single 
stage endoreversible Carnot heat engine with stationary heat reservoirs. Let the heat flux rates absorbed 
and released by the working fluid in the heat engine be 1q  and 2q , respectively. 1T  and 2T  are the 
reservoir temperatures corresponding to the high- and low-temperature sides, respectively. 1'T  and 2'T  are 
the temperatures of the working fluid corresponding to the high- and low-temperature sides, respectively. 
Considering that the heat transfer between the reservoir and the working fluid obeys the radiative heat 
transfer law, then  
 

4 4 4 4
1 1 1 1' 2 2 2' 2( ), ( )q k T T q k T T= − = −  (1) 

 
where 1k  and 2k  are the heat conductances of heat transfer process corresponding to high- and low-
temperature sides, which is related to Stefan-Boltzmann constant and heat transfer surface area. If the 
differences between 1T  and 1'T  as well as 2'T  and 2T  are small, Eq. (1) can be further expressed as [45] 
 

3 3
1 1 1 1 1' 2 2 2 2' 24 ( ), 4 ( )q k T T T q k T T T= − = −  (2) 
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Eq. (2) can be regarded as Newtonian heat transfer law with a conductance as a function of 3T , which is 
called pseudo-Newtonian heat transfer law in Refs. [5, 31-36]. In order to compare optimization results 
for these two different heat transfer laws, Eqs. (1) and (2) can be expressed as 
 

4 4
1 1 1 1 1' 2 2 2 2' 2(5 ) ( ), (5 ) ( )n n n n n nq n k T T T q n k T T T− −= − − = − −  (3) 

 
From Eqs. (1)-(3), one can see that when 1n =  Eq. (3) turns to be pseudo-Newtonian heat transfer law of 
Eq. (2); when 4n = , Eq. (3) turns to be Stefan-Boltzmann radiative heat transfer law of Eq. (1). Since the 
heat engine is an end reversible one, one further obtains entropy balance equation from the second law of 
thermodynamics as follows 
 

4 4
1 1 1 1' 1' 2 2 2' 2 2'( ) / ( ) /n n n n n nk T T T T k T T T T− −− = −  (4) 

 
From Eqs. (3) and (4), the power output P  and the efficiency η  of the heat engine are given by 
 

1 2 1P q q qη= − =  (5) 
 

1 2 1 2' 1'/ 1 / 1 /P q q q T Tη = = − = −  (6) 
 
The main irreversibility of the endoreversible heat engine is due to finite rate heat transfer between the 
working fluid and the reservoirs. Let the total entropy generation rate of the heat engine be σ , one has 
 

2 1 1 2' 2 1

2 1 2 1' 1 2

( ) ( )C
q q q T T q
T T T T T T

σ η η= − = − = −  (7) 

 
According to Refs. [7, 11, 19, 20, 34-41, 43-44, 46], a variable '

2 1' 2'/T T T T≡  is defined. Eq. (6) further 
gives '

21 /T Tη = − , and the efficiency of the reversible heat engine, i.e. the Carnot efficiency, is given by 
2 11 /C T Tη = −  under the same conditions. The formula of η  is very similar to that of Cη , so the variable 

'T  is called the Carnot temperature in Refs. [7, 11, 19, 20, 34-41, 43, 44, 46]. Substituting '
2' 2 1' /T T T T≡  

into Eq. (4) yields 
 

'
1/1

1' 1 3 ' 1 3
1 1 1 2 2

[ ]
( )( / ) / ( ) 1

n n
n n

n

T TT T
k T T T k T−

−
= −

+
 (8) 

 
From '

2' 2 1' /T T T T≡ , one further obtains the temperature 2'T  of the working fluid corresponding to the 
low-temperature side as follows 
 

'
1/1 2 1 2

2' ' 3 ' 1 3
1 1 1 2 2

[( / ) 1][( ) ]
( )( / ) / ( ) 1

n n
n n

n

T T T T TT
T k T T T k T−

−
= −

+
 (9) 

 
Substituting Eq. (8) into Eq. (3) yields the heat flux rate 1q  
 

4 '
1 1 1

1 3 ' 1 3
1 1 1 2 2

(5 ) ( )
( )( / ) / ( ) 1

n n n

n

n k T T Tq
k T T T k T

−

−

− −
=

+
 (10) 

 
Substituting '

21 /T Tη = −  and Eq. (10) into Eq. (5) yields  
 

4 '
1 1 1 2

3 ' 1 3 '
1 1 1 2 2

(5 ) ( ) (1 )
( )( / ) / ( ) 1

n n n

n

n k T T T TP
k T T T k T T

−

−

− −
= −

+
 (11) 
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The total entropy generation rate σ  is obtained by substituting Eq. (11) into Eq. (7), which is given by 
 

4 '
1 1 1

3 ' 1 3 '
1 1 1 2 2 1

(5 ) ( ) 1 1( )
( )( / ) / ( ) 1

n n n

n

n k T T T
k T T T k T T T

σ
−

−

− −
= −

+
 (12) 

 
From Eqs. (8)- (12), all of parameters of the heat engine can be expressed as functions of the Carnot 
temperature 'T .  If the optimal 'T  is obtained, the other optimal parameters of the heat engine can also 
be obtained from 'T . Therefore, the optimization problem is simplified by choosing the Carnot 
temperature 'T  as the control variable.  
 

 
 

Figure 1. Model of a multistage continuous endoreversible Carnot heat engine system 
 

2.2 The fundamental parameter relationships of a multistage continuous endoreversible Carnot heat 
engine system 
For a multistage continuous endoreversible Carnot heat engine system as shown in Figure 1, the driving 
fluid at the high-temperature side is black photon flux. G  is its molar flux rate, V  is its volume flux rate, 

VC  is its molar constant volume heat capacity, and hC  is its substitutional heat capacity. According to the 
theory of thermodynamics of radiation [31-35, 41-45], the molar volume mV , molar constant volume heat 
capacity VC  and molar substitutional heat capacity are, respectively, given by  
 

33 / (4 ), 12 12 , 16 16m B v B V B v h B vV k A c T C k A R C k A Rσ= = = = =  (13) 
 
where Bk  is Boltzmann constant, vA  is Avogadro’s number, c  is the velocity of light, Bσ  is Stefan-
Boltzmann constant, and R  is the universal gas constant. Then the molar flux rate G  of the driving fluid 
is given by  
 

3
1/ 4 / (3 )m B B vG V V V T k A cσ= =  (14) 

 
The molar heat capacity rates VGC  and hGC  of the photon flux are obtained by combining Eq. (13) with 
Eq. (14), which are, respectively, given by  
 

3 3
1 116 / , 64 / (3 )V B h BGC V T c GC V T cσ σ= =  (15) 
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Let 1α  and 2α  be the heat transfer coefficients corresponding to the high- and low-temperature sides, 
respectively, 1Va  is the heat transfer area between the driving fluid per unit volume and the working fluid 
of the heat engine at the high-temperature side, and 1F  is the driving fluid cross-sectional area, 
perpendicular to x . The above parameters are all known for the real systems. For the radiative heat 
transfer law, one has 1 1Bα σ ε= , where 1ε  is the emissivity of the photon flux. The first law of 
thermodynamics gives  
 

3
1 11 1 1

1 1 1 1 1 1 1 1

64
3

h h

V B V V

GC dT GC dTq T dT
k a F vdt a Vdt c a dtα σ ε ε

− −
= = = −  (16) 

 
For the given integration section [ , ]i fτ τ , the boundary temperatures of the driving fluid are denoted as 

1 1( )i iT Tτ =  and 1 1( )f fT Tτ = , then the power output W  and the entropy generation rate sσ  are, 
respectively, given by 
 

1 1

1 1

3 3
1 2 1 2

1 1 1' '

64 64[ (1 )] [ (1 )]
3 3

f f f

i i i

T T tI B B
hT T t

V T T V T TW GC dT dT T dt
c T c T
σ ση= − = − − = − −∫ ∫ ∫  (17) 

 
1 1

1 1

3
1

1 1 1' '
1 2 1

641 1 1 1( ) ( ) [ ( ) ]
3

f f f

i i i

T T tI h B
s h CT T t

GC V TGC dT dT T dt
T T T c T T

σσ η η= − − = − − = − −∫ ∫ ∫  (18) 

 
where 1 1 /T dT dτ= . The dot notation signifies the time derivative. The pressure p  of the photon flux is a 
function of the temperature 1T , which is given by 4

14 / (3 )Bp T cσ=  according to the thermodynamics of 
radiation. When effects of change of pressure p  on the power output of the multistage heat engine 
system are considered, another calculation expression of the power output W  is given by [35-40] 
 

1

1

1

1

2
1'

1
3 3 3 3

1 2 1 1 1 2
1 1' '

[ (1 ) ]

16 16 64 16[ (1 ) ] ( )
3 3

f

i

f f

i i

TII
VT

T t

B BT t

T dpW G C dT
T dT

T T T T T TV dT V T dt
c T c c c T

σ σ

= − − +

= − − + = − −

∫

∫ ∫
 (19) 

 
1

1

3
1

1 1' '
1 1

161 1 1 1( ) [ ( ) ]f f

i i

T tII B
s VT t

V TGC dT T dt
T T c T T

σσ = − − = − −∫ ∫  (20) 

 
Refs. [35-40] calculated the maximum power output for the case with pseudo-Newtonian heat transfer 
law based on Eq. (19). This paper will further considered two different cases with and without effects of 
the pressure, and calculate the optimization results for radiative and pseudo-Newtonian heat transfer 
laws. If the multistage endoreversible Carnot heat engine turns to reversible, Eqs. (17) and (19) further 
give  
 

4 4 3 3
1 1 2 1 116 ( ) 64 ( )

3 9
B i f B i fI

rev

V T T V T T T
W

c c
σ σ− −

= −  (21) 

 
4 4 3 3

1 1 2 1 116 ( ) 16 ( )
3 3

B i f B i fII
rev

V T T V T T T
W

c c
σ σ− −

= −  (22) 

 
In Eqs. (21) and (22), revW  is the reversible power output performance limit. If 1 2fT T=  further, Eqs. (21) 
and (22), respectively, become 
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4 4
41 12 2

P
1 1

16 164 4[1 ( ) ]
3 3 3 3

I B i B i
rev

i i

V T V TT TW
c T T c
σ σ η= − + =  (23) 

 
4 4

1 12
j

1

16 16(1 )
3 3

II B i B i
rev class

i

V T V TTW A
c T c
σ σ η= = − =  (24) 

 
Pη  and Cη  in Eqs. (23) and (24) are the named Petela’s efficiency and Jeter’s efficiency [47-51]. What 

should be paid attention is that the form of the efficiency jη  derived by Jeter is the same as that of Carnot 
efficiency. classA  in Eq. (24) is called classical thermodynamic exergy of radiation photon flux. For the 
endoreversible Carnot heat engine system considered herein, there exists loss of irreversibility due to the 
finite rate heat transfer, and the high-temperature driving fluid temperature can not decrease to the low-
temperature environment temperature 2T  in a finite time, so the maximum value of Eq. (19) is smaller 
than classA  of Eq. (24) consequentially. Combining Eq. (10) with Eq. (16) yields 
 

4 '
1 1 1

3 3 ' 1 3
1 1 1 1 2 2

(5 ) ( )
[( )( / ) / ( ) 1]

n n n

n

dT n T T T
dt T k T T T k T

β −

−

− −
= −

+
 (25) 

 
where 1 13 / 64Vc aβ ε= . Substituting Eq. (25) into Eqs. (17) and (19) yields  
 

4 '
1 1 2

3 ' 1 3 '
1 1 1 2 2

64 (5 ) ( ){ (1 )}
3 [( )( / ) / ( ) 1]

f

i

n n ntI B
nt

V n T T T TW dt
c k T T T k T T

σ β −

−

− −
= −

+∫  (26) 

 
4 '

2 1 1
' 3 ' 1 3

1 1 1 2 2

(5 ) ( )64 16{( ) }
3 [( )( / ) / ( ) 1]

f

i

n n ntII B
nt

T V n T T TW dt
c c T k T T T k T

σ β −

−

− −
= −

+∫  (27) 

 
3. Optimization  
The problem now is to determine the maximum values of Eqs. (26) and (27) subject to the constraint of 
Eq. (25). The control variable is '

2 1' 2'/T T T T≡ , and the inequality 1 1' 2' 2T T T T> > >  always holds for the 
heat engine, so one obtains '

2 1T T T≤ ≤ . This optimal control problem belongs to a variational problem 
whose control variable has the constraint of closed set, and the Pontryagin’s minimum value principle or 
Bellman’s dynamic programming theory may be applied. When the state vector dimension of the optimal 
control problem is small, the numerical optimization conducted by the dynamic programming theory is 
very efficient. Let the optimal performance objective of the problem be max 1 1( , , , )i i f fW T Tτ τ , and the 
admissible control set of the control variable ' ( )T t  is denoted as Ω . The performance objective of the 
control problem can be expressed as follows 
 

''

'
max 1 1 1 1 0 1

( )( )
( , , , ) max[ ( , , , )] max [ ( , , ) ]f

i

t

i i f f i i f f tT tT t
W T t T t W T t T t f T T t dt

∈Ω∈Ω
≡ = ∫  (28) 

 
The Hamilton-Jacobi-Bellman (HJB) control equation of the optimization problem is  
 

'

' 'max max
0 1 1

( )
1

max{ ( , , ) ( , , )} 0
T t

W Wf T T t f T T t
t T∈Ω

∂ ∂
+ + =

∂ ∂
 (29) 

 
where '

0 1( , , )f T T t  corresponds to integrands in Eqs. (26) and (27), and '
1( , , )f T T t  corresponds to the right 

term of Eq. (25). Then HJB control equations corresponding to objectives of Eqs. (26) and (27) are, 
respectively, given by  
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'

4 '
max max2 1 1

3 3 ' 1 3( )
1 1 1 1 1 2 2

(5 ) ( )max{[ (1 ) ] } 0
' [( )( / ) / ( ) 1]

I I n n n

h nT t

W WT n T T TGC
t T T T k T T T k T

β −

−∈Ω

∂ ∂ − −
+ − − =

∂ ∂ +
 (30) 

 

'

4 '
max max2 1 1

' 3 3 ' 1 3( )
1 1 1 1 1 2 2

(5 ) ( )max{[( ) ] } 0
[( )( / ) / ( ) 1]

II II n n n

h V nT t

W WT n T T TGC GC
t T T T k T T T k T

β −

−∈Ω

∂ ∂ − −
+ − − =

∂ ∂ +
 (31) 

 
There are only analytical solutions of Eqs. (30) and (31) for the special cases, while for the radiative heat 
transfer law, one has to refer to numerical methods. Consider that the continuous differential equation 
should be discretized for the numerical calculation performed on the computer, and then the discrete 
equations are given based on Eqs. (25)-(27), as follows  
 

4 '
1 1 2

3 ' 1 3 '
1 1 1 1 2 2

64 (5 ) [( ) ( ) ]( ) { (1 )}
3 [ ( ) ( / ) / ( ) 1]

i n i n i nN
I N B

i i i n i
i

V n T T T TW
c k T T T k T T
σ βθ −

−
=

− −
= −

+∑  (32) 

 
4 '

2 1 1
' 3 ' 1 3

1 1 1 1 2 2

(5 )( ) [( ) ( ) ]64 16( ) {( ) }
3 [ ( ) ( / ) / ( ) 1]

i i n i n i nN
II N B

i i i i n
i

T V n T T TW
c c T k T T T k T

σ βθ −

−
=

− −
= −

+∑  (33) 

 
4 '

1 1 1
1 1 3 3 ' 1 3

1 1 1 1 2 2

(5 ) [( ) ( ) ]
( ) [ ( ) ( / ) / ( ) 1]

n i n i n
i i i

i i i i n

n T T TT T
T k T T T k T

β θ
−

−
−

− −
− = −

+
 (34) 

 
1i i it t θ−− =  (35) 

 
The optimal control problem is to determine the maximum values of Eqs. (32) and (33) subject to the 
constraints of discrete Eqs. (34) and (35). From Eqs. (32)-(35), the Bellman’s backward recurrence 
equations corresponding to Eqs. (32) and (33) are, respectively, given by  
 

'

4 '
( ) 1 1 2

max 1 3 ' 1 3 ',
1 1 1 2 2

4 '
( ) 1 1 1

max 1 3 3 ' 1 3
1 1 1 1 2 2

64 (5 ) [( ) ( ) ]( , ) max{ (1 )
3 [ ( ) ( / ) / ( ) 1]

(5 ) [( ) ( ) ]( , )}
( ) [ ( ) ( / ) / ( ) 1]

i i

i n i n i n
I i i i B

i i i n iT

n i n i n
I i i i i i

i i i i n

V n T T T TW T t
c k T T T k T T

n T T TW T t
T k T T T k T

θ

σ βθ

βθ θ

−

−

−
−

−

− −
= −

+

− −
+ + −

+

 (36) 

 

'

4 '
( ) 2 1 1

max 1 ' 3 ' 1 3,
1 1 1 2 2

4 '
( ) 1 1 1

max 1 3 3 ' 1 3
1 1 1 1 2 2

(5 )( ) [( ) ( ) ]64 16( , ) max{( )
3 [ ( ) ( / ) / ( ) 1]

(5 ) [( ) ( ) ]( ,
( ) [ ( ) ( / ) / ( ) 1]

i i

i i n i n i n
II i i i B

i i i i nT

n i n i n
II i i i i

i i i i n

T V n T T TW T t
c c T k T T T k T

n T T TW T t
T k T T T k T

θ

σ βθ

βθ θ

−

−

−
−

−

− −
= −

+

− −
+ + −

+
)}i

 (37) 

 
4. Analysis for special cases 
4.1 For pseudo-Newtonian heat transfer law 
When n 1= , i.e. the heat transfer between the working fluid and the heat reservoir obeys pseudo-
Newtonian heat transfer law. From Appendix A, Refs. [11, 35-40] derived analytical solutions of 
extremum power output and the optimal fluid temperature configuration based on pseudo-Newtonian 
heat transfer law, i.e. Eqs. (A12) and (A14). However, Eqs. (A12) and (A14) were obtained based on the 
condition that the total equivalent thermal conductance is a constant. This condition is very strictly, 
which is due to that the total equivalent thermal conductance is a function of the reservoir temperature 

1T . The temperature 1T  changes along the fluid flow direction, so the condition that the total thermal 
conductance is a constant is difficult to hold. Thus there are also no analytical solutions for the case with 
the pseudo-Newtonian heat transfer law, but some algebra equations related to the optimal solutions can 
be obtained. Eqs. (25), (30) and (31), respectively, become  
 

'
1 1

3 3
1 1 2 2

4 ( )
[( ) / ( ) 1]

dT T T
dt k T k T

β −
= −

+
 (38) 
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'

'
max max2 1

3 3( )
1 1 1 2 2

4 ( )max{[ (1 ) ] } 0
' [( ) / ( ) 1]

I I

h
T t

W WT T TGC
t T T k T k T

β
∈Ω

∂ ∂ −
+ − − =

∂ ∂ +
 (39) 

 

'

'
max max2 1

' 3 3( )
1 1 1 2 2

4 ( )max{[( ) ] } 0
[( ) / ( ) 1]

II II

h V
T t

W WT T TGC GC
t T T k T k T

β
∈Ω

∂ ∂ −
+ − − =

∂ ∂ +
 (40) 

 
When max

IW  is chosen to be the optimization objective, maximizing the second term of Eq. (39) with 
respect to 'T  yields  
 

' 1
1 2 max 1/ [1 ( ) ( / )/]I

hT T T GC W T−= − ∂ ∂  (41) 
 
Substituting Eq. (41) into Eq. (39) yields  
 

1 2max 1
max 1 2 13 3

1 1 2 2

4 { [1 ( ) ( / )] / } 0
[( ) / ( ) 1]

I
Ih

h
W GC T GC W T T T

t k T k T
β −∂

+ − ∂ ∂ − =
∂ +

 (42) 

 
The second term of Eq. (42) is the extremum Hamilton function 1 max 1( , / )IH T W T∂ ∂  
 

1 21
1 max 1 max 1 2 13 3

1 1 2 2

4( , / ) { [1 ( ) ( / )] / }
[( ) / ( ) 1]

I Ih
h

GC TH T W T GC W T T T
k T k T

β −∂ ∂ = − ∂ ∂ −
+

 (43) 

 
From Eq. (43), one can see that H  contains the variable τ  inexplicitly, and the equation 

/ /dH d Hτ τ= ∂ ∂  holds for the Hamilton function, so the Hamilton function is autonomous and 
1 max 1( , / )IH T W T∂ ∂  keeps constant along the optimal path. Let the constant be h , and one further obtains 

 
1 21

max 1 2 13 3
1 1 2 2

4 { [1 ( ) ( / )] / }
[( ) / ( ) 1]

Ih
h

GC T GC W T T T h
k T k T

β −− ∂ ∂ − =
+

 (44) 

 
From Eq. (44), one obtains max 1/IW T∂ ∂ , as follows 
 

3 3 2
max 1 1 1 2 2 1 2 1/ {1 { [( ) / ( ) 1] / (4 ) / } }I

h hW T GC h k T k T GC T T Tβ∂ ∂ = − + +  (45) 
 
Substituting Eq. (45) into Eq. (41) yields 
 

' 3 3
1 1 1 2 2 2/ { [( ) / ( ) 1] / (4 ) 1}hT T h k T k T GC Tβ= + +  (46) 

 
Substituting Eq. (46) into Eq. (38) yields 
 

3 3
1 1 1 2 2 21

3 3 3 3
1 1 2 2 1 1 2 2 2

4 [( ) / ( ) 1] / (4 )

[( ) / ( ) 1][ [( ) / ( ) 1] / (4 ) 1]
h

h

T h k T k T GC TdT
dt k T k T h k T k T GC T

β β

β

+
= −

+ + +
 (47) 

 
For the given boundary conditions 1 1( )i iT t T=  and 1 1( )f fT t T= , an equation related to the Hamiltonian 
constant h  is obtained by substituting 3

164 / (3 )h BGC V T cσ=  into Eq. (47)  
 

1

1

3 3
1 2 1 1 2 23 31

1 1 1 1 13
2 2
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− + + = −∫  (48) 
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The Hamiltonian constant h  corresponding to the objective max
IW  is obtained from Eq. (48), and then 

substituting h  into Eq. (47). Eq. (47) becomes the problem of initial value of differential equation, and 
the optimal temperature 1T  versus the time t  is obtained.  
When max

IIW  is chosen to be optimization objective and though some mathematical derivations, the similar 
equations to Eqs. (47) and (48) are also obtained, which are, respectively, given by  
 

3 3
1 1 1 2 2 21

3 3 3 3
1 1 2 2 1 1 2 2 2

4 [( ) / ( ) 1] / (4 )

[( ) / ( ) 1]{ [( ) / ( ) 1] / (4 ) 1}
V
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T h k T k T GC TdT
dt k T k T h k T k T GC T

β β

β

+
= −

+ + +
 (49) 

 
1

1

3 3 3 3
1 1 1 1 2 1 1 2 2

1 1 13
2 2

( ) 2 [( ) / ( ) 1]1 ln( / ) { }
12 4

f

i

Tf i B
f i i fT

k T T V T T k T k T
T T dT t t

k T ch
σ

β β β
− +

+ + = −∫  (50) 

 
For the given boundary conditions 1 1( )i iT t T=  and 1 1( )f fT t T= , the Hamiltonian constant h  corresponding 
to the objective max

IW  is obtained from Eq. (50). And then substituting h  into Eq. (49), and Eq. (49) 
becomes the problem of initial value of differential equation, so the optimal temperature 1T  versus the 
time t  is also obtained. 
What should be paid attention is that the above methods are only suitable for the case with the fixed final 
driving fluid temperature 1 fT . While for the case with the free 1 fT , one has to refer to dynamic 
programming algorithm (Figure 2).  
 

 
 

Figure 2. The dynamic programming schematic plan of the multistage discrete endoreversible Carnot 
heat engines [36] 

 
4.2 For Stefan-Boltzmann heat transfer law 
When 4n = , i.e. the heat transfer between the working fluid and the heat reservoir obeys Stefan-
Boltzmann heat transfer law. Eqs. (25), (30) and (31), respectively, become  
 

4 '4
1 1

3 ' 3
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 (53) 

 
There are no analytical solutions of Eqs. (51)-(53) for the radiative heat transfer law, and one has refer to 
numerical methods. For numerical calculations, Eqs. (32)-(34), respectively, become 
 

4 ' 4
1 2
' 3 '
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64 [( ) ( ) ]( ) { (1 )}
3 [( / )( / ) 1]
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4 ' 4
2 1
' ' 3

1 1 2 2

[( ) ( ) ]64 16( ) {( ) }
3 [( / )( / ) 1]

i i iN
II N B

i i
i

T V T TW
c c T k k T T

σ βθ
=

−
= −

+∑  (55) 

 
4 ' 4

1 1
1 1 3 ' 3

1 1 2 1

[( ) ( ) ]
( ) [( / )( / ) 1]

i i
i i i

i i i

T TT T
T k k T T

β θ− −
− = −

+
 (56) 

 
The Bellman’s backward recurrence equations corresponding to the objective functions IW  and IIW  are, 
respectively, given by  
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5. Numerical examples and discussions 
Refs. [43, 44] show that the maximum power output of the multistage heat engine system is 

max 2rev sW W T σ= − . When the total process period is fixed (i.e. the total heat conductance of the driving 
fluid at the high-temperature side is fixed), the final driving fluid temperature at the high-temperature 
side can not decrease to the environment temperature, and there is a low limit value 1 fT . With the 
decrease of the final temperature 1 fT , both the reversible power output revW  and the total entropy 
generation rate sσ  increase, so the relationship between maxW  and 1 fT  is unknown. Since maxW  is the 
continuous function of 1 fT , there is an optimal *

1 fT  during the closed section 1 1[ , ]f iT T  for maxW  to achieve 
its maximum value. This was ignored in Refs. [5, 7, 11, 13-22, 34-42], which chose the low-temperature 
environment temperature 2T  as the final temperature. The same analysis methods as Refs. [43, 44] are 
adopted herein, and numerical solutions for the radiative heat transfer law [ 4( )q T∝ ∆ ] are solved by 
dynamic programming algorithm [52, 53] by taking the power output IW  of the system for example. 
Two different boundary conditions including fixed and free final temperatures are considered herein, and 
optimization results for the radiative heat transfer law are compared with those for the pseudo-Newtonian 
heat transfer law.  
According to Refs. [35, 36], the following calculation parameters are set: the volume flow rate of the 
high-temperature radiation photo flux is 4 310 /V m s= , the initial temperature is 10 5800T K= , the 
environment temperature at the low-temperature side is 2 300T K= , the velocity of the light is 

82.998 10 /c m s= × , Stefan-Boltzmann constant is 8 2 45.66667 10 / ( )B W m Kσ −= × ⋅ , Avogadro’s number is 
236.0221367 10 (1/ )vA mol= × , Boltzmann constant is 231.380658 10 /Bk J K−= × , the universal gas constant 

is 8.314510 / ( )B vR k A J mol K= = ⋅ , the emissivity are 1 2 1ε ε= = . The grid division of the time coordinate 
is linear. Since 1 13 / 64Vc aβ ε=  and its unit is 1 / s , iβθ  is a dimensionless quantity and 0.15iβθ =  is set 
herein. Let 2 1k k=  for the radiative heat transfer law, and 2 1100k k=  for pseudo-Newtonian heat transfer 
law. 

 
5.1 Performance analysis for a single steady heat engine  
Figure 3 shows the heat flux rate 1q  absorbed by the heat engine versus Carnot temperature 'T  for two 
different heat transfer laws. From Figure 3, one can see that with the increase of Carnot temperature 'T , 
the heat flux rate 1q  for the pseudo-Newtonian heat transfer law decreases linearly, while that for the 
radiative heat transfer law decreases non-linearly; for the same Carnot temperature 'T , the heat flux rate 
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1q  for the pseudo-Newtonian heat transfer law increases with the increase of the heat conductance at the 
low-temperature side. Figure 4 shows the efficiency η  of the heat engine versus Carnot temperature 'T . 
Since '

21 /T Tη = − , η  increases with the increase of 'T , but its relative increase amount decreases, which 
is independent of heat transfer laws. Figure 5 shows the power P  of the heat engine versus Carnot 
temperature 'T . From Figure 5, one can see that there is an extremum for P  with respect to Carnot 
temperature 'T , and the optimal Carnot temperatures 'T  corresponding to the maximum power output 
for different heat transfer laws are different from each other; for the same Carnot temperature 'T , the 
power P  of the heat engine increases with the increase of the heat conductance at the low-temperature 
side. Figure 6 shows the entropy generation rate σ  versus Carnot temperature 'T . From Figure 6, one 
can see that the entropy generation rate σ  for different heat transfer laws decreases with the increase of 
Carnot temperature 'T . Especially when Carnot temperature 'T  is small, the entropy generation rate 
decreases fast, and its change rate tends to be smoothly with the increase of Carnot temperature 'T . From 

'
2 1' 2'/T T T T≡  and when '

2 300T T K= = , the heat-absorbed temperature 1'T  of the working fluid in the 
endoreversible Carnot heat engine is equal to its heat-released temperature 2'T , i.e. the limit Carnot cycle, 
the heat flux rate 1q  absorbed by the working fluid is equal to that released, the heat engine efficiency η  
is equal to zero as shown in Figure 4, the power output P of the heat engine is also equal to zero as 
shown in Figure 5, and the entropy generation rate achieves its maximum value as shown in Figure 6. 
While '

1 5800T T K= = , the heat-absorbed temperature 1'T  of the working fluid in the endoreversible 
Carnot heat engine is equal to the high-temperature reservoir temperature 1T , and the heat-released 
temperature of the working fluid is equal to the low-temperature reservoir temperature 2T , i.e. the 
reversible Carnot cycle. The rate of heat absorbed 1q  is equal to zero as shown in Figure 3, the heat 
engine efficiency achieve its maximum value and equals to the Carnot efficiency 2 11 /C T Tη = −  as shown 
in Figure 4, its power P  is equal to zero as shown in Figure 5, and the entropy generation rate σ  is also 
equal to zero as shown in Figure 6. 
  
 

 
 

Figure 3. The absorbed heat flux rate 1q  of the single-stage heat engine versus Carnot temperature 'T  
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Figure 4. The efficiency η  of the single-stage heat engine versus Carnot temperature 'T  
 

 
 

Figure 5. The power output P of the single-stage heat engine versus Carnot temperature 'T  
 

 
 

Figure 6. The entropy generation rate σ  of the single-stage heat engine versus Carnot temperature 'T  



International Journal of Energy and Environment (IJEE), Volume 3, Issue 3, 2012, pp.359-382 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2012 International Energy & Environment Foundation. All rights reserved. 

371

5.2 Numerical examples for the multistage heat engine system with the radiative heat transfer law 
5.2.1 For the fixed final temperature 
When the final temperature 1 fT  is fixed, the reversible power output revW  is also fixed, and then 
optimization for maximizing power output is equivalent to that for minimizing entropy generation due to 

2rev sW W T σ= − . In order to analyze effects of the final temperature 1 fT  on the optimization results, the 
final temperature is set to be 1 500fT K= , 1 1000fT K= , and 1 1500fT K= . Figures 7 and 8 show the optimal 
fluid temperature 1T  and Carnot temperature 'T  versus the time tβ . Figure 9 shows the optimal power 
output iW  of the heat engine versus the stage i . In Figures 7-9, the continuous lines denote the analytical 
optimization results, while the discrete points denote the numerical optimization results. The total stage 

100N =  of heat engines are shown with the step of 2 in Figures 7-9. Table 1 lists optimization results of 
the key parameters of the multistage endoreversible heat engine system with the radiative heat transfer 
law. From Figure 7, one can see that the driving fluid temperature 1T  decreases non-linearly with the 
increase of the time tβ . From Figures 8 and 9, one can see that when 1 500fT K=  and 1 1000fT K= , the 
optimal Carnot temperature profiles consist of two segments: the heat engines in the former segment 
have power output, while those in the latter segment have no power output due to ' 300T K= . What 
should be paid attention is that the heat engines in the latter segment seem to be shortened so that the 
fluid temperature at the high-temperature side decreases to the desired final temperature at the fast speed. 
When 1 1500fT K= , there is power output for each stage heat engine. From Table 1, one can see that 
when 1 500fT K= , one obtains '(0) 981.1T K=  and 3

max 6.88 10W W= × ; when 1 1000fT K= , one obtains 
'(0) 1020.7T K=  and 3

max 7.05 10W W= × ; when 1 1500fT K= , one obtains '(0) 1040.0T K=  and 
3

max 7.13 10W W= × , i.e. both the initial Carnot temperature '(0)T  and the maximum power output maxW  
increase with the increase of the final temperature 1 fT . Both the maximum power output of the 
multistage heat engine system with the radiative heat transfer law and the corresponding optimal control 
are different for the cases with different final fluid temperatures. From the above analysis, the boundary 
temperature change has significant effects on the power output optimization results of the multistage heat 
engine system.  
 
 

 
 

Figure 7. The optimal driving fluid temperature 1T  versus the dimensionless time tβ  for Newtonian heat 
transfer law (fixed 1 fT ) 
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Figure 8. The optimal Carnot temperature 'T  versus the dimensionless time tβ  for Newtonian heat 
transfer law (fixed 1 fT ) 

 

 
 

Figure 9. The optimal power output iW  of each stage heat engine versus the stage i  for Newtonian heat 
transfer law (fixed 1 fT ) 

 
Table 1. Optimization results of the key parameters of the multistage endoreversible heat engine system 

with the radiative heat transfer law 
 

Key parameters '(0)T  maxW  
1 500fT K=  981.1K  36.88 10 W×  
1 1000fT K=  1020.7K  37.05 10 W×  

Fixed 1 fT   
( 1 150t s= ) 

1 1500fT K=  1040.0K  37.13 10 W×  
Key parameters  *

1 fT  '(0)T  *
maxW  

0.10iβθ =  2626.9K  937.4K  36.57 10 W×  
0.15iβθ =  2286.0K  1070.2K  37.19 10 W×  

Free 1 fT  

0.30iβθ =  1770.6K  1346.9K  38.09 10 W×  
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5.2.2 For the free final temperature 
When the final temperature 1 fT  is free, both the reversible power output revW  and the entropy generation 
rate sσ  increase with the decrease of the final temperature 1 fT . When 1 1f iT T= , the minimum entropy 
generation is equal to zero, and optimization for maximizing power output is not equivalent to that for 
minimizing entropy generation. In order to analyze effects of change of the total time on the optimization 
results, the infinitesimal dimensionless time is chosen to be 0.10iβθ = , 0.15iβθ = , and 0.30iβθ = . 
Figures 10 and 11 show the optimal fluid temperature 1T  and optimal Carnot temperature 'T  versus the 
dimensionless time tβ , respectively, and Figure 12 shows the corresponding optimal power output iW  of 
each stage heat engine versus the stage i . From Figures 10 and 11, one can see that both the fluid 
temperature 1T  and Carnot temperature 'T  decrease nonlinearly with the increase of the time tβ ;, both 
the optimal final temperature *

1 fT  and Carnot temperature 'T  decrease with the increase of the 
infinitesimal dimensionless time iβθ . From Table 1, one can see that when 0.10iβθ = , one obtains 

*
1 2626.9fT K= , '(0) 937.4T K=  and * 3

max 6.57 10W W= × ; when 0.15iβθ = , one obtains *
1 2286.0fT K= , 

'(0) 1070.2T K=  and * 3
max 7.19 10W W= × ; when 0.30iβθ = , one obtains *

1 1770.6fT K= , '(0) 1346.9T K=  and 
* 3

max 8.09 10W W= × , i.e. with the increase of iβθ , the final temperature *
1 fT  increases, the initial Carnot 

temperature '(0)T  increases, and the maximum power output *
maxW  of the system increases. From Figure 

12, one can see that the power output iW  of each stage heat engine decreases with the increase of the 
stage i , which is due to that the driving fluid temperature 1T  decreases with the increase of the time tβ ; 
when the stage i  is small, the power output iW  increases with the increase of iβθ , while the stage i  is 
relative large, the power output iW  decreases with the increase of iβθ , i.e. the optimal distributions of 
the power output iW  along the stage i  are different for different total time constraints. This shows that 
the change of the total time constraint has significant effects on the power output optimization results of 
the multistage heat engine system. 
 
 

 
 

Figure 10. The optimal driving fluid temperature 1T  versus the dimensionless time tβ  for Newtonian 
heat transfer law (free 1 fT ) 
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Figure 11. The optimal Carnot temperature 'T  versus the dimensionless time tβ  for Newtonian heat 
transfer law (free 1 fT ) 

 

 
 

Figure 12. The optimal power output iW  of each stage heat engine versus the stage i  for Newtonian heat 
transfer law (free 1 fT ) 

 
5.3 Comparison of the optimization results with different heat transfer laws 
5.3.1 For the fixed final temperature 1 fT  
When the final temperature is fixed, let 0.15iβθ =  and 1 500fT K= . Figure 13 shows the optimal fluid 
temperature 1T  and Carnot temperature 'T  versus the dimensionless time tβ  for the fixed final 
temperature and two different heat transfer laws, and Figure 14 shows the corresponding optimal power 
output iW  of each stage heat engine versus the stage i . From Figure 13, one can see that the fluid 
temperature for the radiative heat transfer law is lower than that for the pseudo-Newtonian heat transfer 
law, and the optimal Carnot temperatures for two different heat transfer laws are not equal at the same 
time. From Figure 14, the power output of each stage heat engine for the radiative heat transfer law is 
smaller than that for the pseudo-Newtonian heat transfer law. This shows that heat transfer laws have 
significant effects on the maximum power output of the multistage heat engine system for the fixed final 
temperature. 
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Figure 13. The optimal driving fluid temperature 1T  and optimal Carnot temperature 'T  versus the 
dimensionless time tβ  (fixed 1 fT ) 

 

 
 

Figure 14. The optimal power output iW  of each stage heat engine versus the stage i  (fixed 1 fT ) 
 
5.3.2 For the free final temperature 1 fT  
When the final temperature is free, let 0.15iβθ = . Figure 15 shows the fluid temperature 1T  and Carnot 
temperature 'T  versus the dimensionless time tβ  for the free final temperature and two different heat 
transfer laws, which includes the optimization results for the pseudo-Newtonian and radiative heat 
transfer laws, and stage-by-stage optimization (i.e. the first stage is optimized, and then the second stage 
is optimized, such-and-such repetition) results for the radiative heat transfer law. Figure 16 shows the 
corresponding optimal power output of each stage heat engine versus the stage. From Figure 15, one can 
see that the optimal fluid temperature for the radiative heat transfer law is higher than that for the pseudo-
Newtonian heat transfer law, which is contrast to that for the fixed final temperature, but the optimal 
Carnot temperature for the pseudo-Newtonian heat transfer law is still higher than that for the radiative 
heat transfer law; the fluid temperature for the stage-by-stage optimization strategy with the radiative 
heat transfer law decreases fast, and the final temperature is approximate equal to the environment 
temperature. From Figure 16, one can see that the power output of each stage heat engine for the pseudo-
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Newtonian heat transfer law is larger than that for the radiative heat transfer law; the power output of 
each stage heat engine for the stage-by-stage optimization strategy with the radiative heat transfer law 
decreases fast with the increase of the stage i , while the power output distribution of each stage heat 
engine along the stage i  for the optimal strategy is relative uniform. Calculation results show that the 
total power output of the system for the stage-by-stage optimization strategy is 33.71 10 W× , while that for 
the global optimization strategy is 37.19 10 W× , i.e. the total power output after optimization is increased 
by nearly 93.8% . This shows that both heat transfer laws and boundary condition change have 
significant effects on the maximum power output of the multistage heat engine system for the free final 
temperature. 
 
 

 
 

Figure 15. The optimal driving fluid temperature 1T  and optimal Carnot temperature 'T  versus the time 
tβ  (free 1 fT ) 

 
 

 
 

Figure 16. The optimal power output iW  of each stage heat engine versus the stage i  (free 1 fT ) 
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6. Conclusion 
On the basis of Refs. [5, 7, 11, 13-22, 34-44], this paper further investigates the multistage 
endoreversible Carnot heat engine system operating between a finite thermal capacity high-temperature 
fluid reservoir and an infinite thermal capacity low-temperature environment with the heat transfer law 
[ 4( )( ( ))n nq T Tα −∝ ∆ ]. Optimal control theory is applied to derive the continuous HJB equations, which 
determined the optimal fluid temperature configurations for maximum power output under the conditions 
of fixed duration and fixed initial temperature of the driving fluid. Based on universal optimization 
results, the analytical solution for the pseudo-Newtonian heat transfer law [ 3( )( )q T Tα∝ ∆ ] is also 
obtained. Since there are no analytical solutions for the radiative heat transfer law [ 4( )q T∝ ∆ ], the 
continuous HJB equations are discretized and the dynamic programming algorithm is adopted to obtain 
the complete numerical solutions of the optimization problem. Numerical examples for the radiative heat 
transfer law and two different boundary conditions including the free and fixed final temperatures are 
given, and the obtained results are also compared with those for the pseudo-Newtonian heat transfer law 
and the results for the stage-by-stage optimization strategy. The results show that when the final fluid 
temperature is fixed, optimization for maximizing power output is equivalent to that for minimizing 
entropy generation rate, besides, if the process period tends to infinity, the maximum power output of the 
multistage endoreversible heat engine system tends to its reversible power performance limit; when both 
the process period and the final fluid temperature are fixed, there is an optimal control strategy for the 
power output of the multistage heat engine system to achieve its maximum value, and the maximum 
power output and the corresponding optimal driving fluid temperature configuration are different for 
different final fluid temperature; when the final fluid temperature is free, optimization for maximizing 
power output is not equivalent to that for minimizing entropy generation rate, however, if the process 
period is fixed further, there is an optimal final fluid temperature for the power output of the multistage 
heat engine system to achieve its maximum value, the total time constraint has effects on the optimal 
driving fluid temperature configuration, the maximum power output and the corresponding optimal 
control strategy; when the process period and the final fluid temperature tend to infinity and the 
environment temperature, respectively, the maximum power output of the multistage endoreversible heat 
engine system tends to the classical radiation thermodynamic exergy function; both the maximum power 
output of the multistage heat engine system and the corresponding optimal fluid temperature 
configuration for the radiative heat transfer law are significantly different from those for the pseudo-
Newtonian heat transfer law, and the power output for the global optimization strategy with the radiative 
heat transfer law is 93%  larger than that for the stage-by-stage optimization strategy. The obtained 
results can provide some theoretical guidelines for the optimal designs and operations of solar energy 
conversion and transfer systems. 
 
Appendix A 
The dimensionless time τ  is defined as follows: 
 

3 3
1 1 2 2[( ) / ( ) 1] / (4 )k T k T tτ β= +  (A1) 

 
Eqs. (25), (30) and (31), respectively, become  
 

1 1/ 'dT d T Tτ = −  (A2) 
 

'

'max max2
1

( )
1

max{[ (1 ) ]( )} 0
'

I I

h
T t

W WTGC T T
T Tτ ∈Ω

∂ ∂
+ − − − =

∂ ∂
 (A3) 

 

'

'max max2
1'( )

1

max{[( ) ]( )} 0
II II

h V
T t

W WTGC GC T T
T Tτ ∈Ω

∂ ∂
+ − − − =

∂ ∂
 (A4) 

 
(a) max

IW  is chosen to be optimization objective 
Maximizing the second term of Eq. (A3) with respect to 'T  yields  
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' 1
1 2 max 1/ [1 ( ) ( / )]I

hT T T GC W T−= − ∂ ∂  (A5) 
 
Substituting Eq. (A5) into Eq. (A3) yields  
 

{ }1 2max
1 max 1 2 1{ [1 ( ) ( / )] / } 0

I
I

h h
W GC T GC W T T T
τ

−∂
+ − ∂ ∂ − =

∂
 (A6) 

 
The second term of Eq. (A6) is the extremum Hamilton function 1 max 1( , / )IH T W T∂ ∂  
 

1 2
1 max 1 1 max 1 2 1( , / ) { [1 ( ) ( / )] / }I I

h hH T W T GC T GC W T T T−∂ ∂ = − ∂ ∂ −  (A7) 
 
From Eq. (A7), one can see that H  contains the variable τ  inexplicitly, and the equation 

/ /dH d Hτ τ= ∂ ∂  holds for the Hamilton function, so the Hamilton function is autonomous and 
1 max 1( , / )IH T W T∂ ∂  keeps constant along the optimal path. Let the constant be h , and one further obtains 

 
1 2

1 max 1 2 1{ [1 ( ) ( / )] / }I
h hGC T GC W T T T h−− ∂ ∂ − =  (A8) 

 
Solving Eq. (A8) for max 1/IW T∂ ∂  yields  
 

2
max 1 1 2 1/ {1 { / ( ) / } }I

h hW T GC h GC T T T∂ ∂ = − +  (A9) 
 
Substituting Eq. (A9) into Eq. (A3) yields  
 

' 1

2/ ( ) 1h

TT
h GC T

=
+

 (A10) 

 
Substituting Eq. (A10) into Eq. (A2) yields  
 

21
1

2

/ ( )
/ ( ) 1

h

h

h GC TdT T
d h GC Tτ

−
=

+
 (A11) 

 
Since 1 1( )i iT Tτ = , substituting 3

164 / (3 )h BGC V T cσ=  into Eq. (A11) and then integrating it yields the 
optimal working fluid temperature 1T  versus the time τ : 
 

3/2 3/22
1 1 1 1

16 ( ) ln( / )
3 3

B
i i i

V T T T T T
ch
σ τ τ− − − = −  (A12) 

 
Substituting Eqs. (A10) and (A11) into Eq. (18) yields  
 

3/2 3/2
1 1

2

16 ( )
3 3

I B
s i f

hV T T
cT
σσ = −  (A13) 

 
The maximum power output max

IW  is given by 
 

4 4 3 3
1 1 2 1 1 3/2 3/22

max 1 1
2

2

16 ( ) 64 ( ) 16 ( )
3 9 3 3

B i f B i fI B
i f

I I
rev s

V T T V T T T T hVW T T
c c cT

W T

σ σ σ

σ

− −
= − − −

= −

 (A14) 

 
Eqs. (A12)-(A14) coincides with the results obtained by variational calculus in Refs. [11, 35-40]. 
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(b) max
IIW  is chosen to be optimization objective 

Maximizing the second term of Eq. (A4) with respect to 'T  yields 
 

'
1 2 max 1/ [ ( / )]II

V hT GC T T GC W T= − ∂ ∂  (A15) 
 
Substituting Eq. (A15) into Eq. (A4) yields  
 

2max
max 1 1 2{ [ ( / )] } 0

II
II

h V
W GC W T T GC T
τ

∂
+ − ∂ ∂ − =

∂
 (A16) 

 
The second term of Eq. (A6) is the extremum Hamilton function 1 max 1( , / )IIH T W T∂ ∂  
 

2
1 max 1 max 1 1 2( , / ) { [ ( / )] }II II

h VH T W T GC W T T GC T∂ ∂ = − ∂ ∂ −  (A17) 
 
From Eq. (A17), one can see that H  contains the variable τ  inexplicitly, and the equation 

/ /dH d Hτ τ= ∂ ∂  holds for the Hamilton function, so the Hamilton function is autonomous and 
1 max 1( , / )IIH T W T∂ ∂  keeps constant along the optimal path. Let the constant be h , and one further obtains 

 
2

max 1 1 2{ [ ( / )] }II
h VGC W T T GC T h− ∂ ∂ − =  (A18) 

 
Solving Eq. (A18) for max 1/IIW T∂ ∂  yields  
 

2
max 1 2 1/ ( ) /II

h VW T GC h GC T T∂ ∂ = − +  (A19) 
 
Substituting Eq. (A19) into Eq. (A15) yields  
 

' 1

21 / ( )V

TT
h GC T

=
+

 (A20) 

 
Substituting Eq. (A20) into Eq. (A2) yields  
 

2
1 1

2

/ ( )
/

/ ( ) 1
V

V

h GC T
dT d T

h GC T
τ = −

+
 (A21) 

 
Since 1 1( )i iT Tτ = , substituting 3

116 /V BGC V T cσ=  into Eq. (A21) and then integrating it yields the optimal 
working fluid temperature 1T  versus the time τ : 
 

3/2 3/22
1 1 1 1

8 ( ) ln( / )
3

B
i i i

V T T T T T
ch
σ τ τ− − − = −  (A22) 

 
Substituting Eqs. (A20) and (A21) into Eq. (20) yields  
 

3/2 3/2
1 1

2
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3

II B
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The maximum power output max

IIW  is given by 
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4 4 3 3
1 1 2 1 1 3/2 3/22

max 1 1
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V T T V T T T T V hW T T
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