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Abstract 
An electromagnet requests high magnetic induction and low temperature. Based on constructal theory 
and entransy theory, a new complex-objective function of magnetic induction and mean temperature 
difference to describe performance of electromagnet is provided, and the electromagnet has been 
optimized using the new complex-objective function. When the performance of electromagnet achieves 
its best, the solenoid becomes longer and thinner as the number of the high thermal conductivity cooling 
discs increases. Simultaneously, the magnetic induction becomes higher and the mean temperature 
difference becomes lower. The optimized performance of electromagnet is also improved as the volume 
of solenoid increases. Simultaneously, as the volume of the electromagnet increases, the magnetic 
induction increases to its maximum and then decreases, but the mean temperature decreases all along. 
Copyright © 2015 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Constructal theory generated at the study of configuration of flow system [1-13]. The constructal law 
was stated as follows: For a flow system to persist in time (to survive) it must evolve in such a way that it 
provides easier and easier access to the current that flow through it. The heat transfer system is an 
important research area for constructal theory, and the development of constructal theory proposes a new 
way for the research of heat conduction and convective heat transfer [14-37]. 
Maximum temperature is usually taken as the optimization objective in heat transfer optimization. The 
minimization of maximum temperature reflects the optimization result of local part (the hot spot), not the 
optimization result of the whole system. Some scholars used finite-time thermodynamics or entropy 
generation minimization (EGM) [38-43] to optimize heat transfer processes. Entropy generation 
minimization is a heat transfer optimization aiming at exergy lost minimization. Entropy is the measure 
of the conversion extent from heat to work, and entropy production is the measure of the reduction of the 
doing work capability due to the irreversibility of the process. The principle of minimum entropy 
production indicates that the stationary nonequilibrium state is characterized by the minimum entropy 
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production. All these concepts are discussed from the viewpoint of thermodynamics. However, what the 
heat conduction concerned with is the heat transport efficiency [44]. To solve this shortage in current 
heat transfer theory, Guo et al. [44] defined heat transfer potential capacity and heat transfer potential 
capacity dissipation function to describe the heat transfer ability amount and its dissipation rate in the 
heat transfer process. In terms of the analogy between heat and electrical conductions, Guo et al.  [45] 
validated that heat transfer potential capacity is a new physical quantity describing heat transfer ability 
which is corresponding to electrical potential energy: 
 

1 1
2 2vh vh h vhE Q U Q T= =  (1) 

 
where vh vQ Mc T=  is the thermal energy or the heat stored in an object with constant volume which may 
be referred to as the thermal charge, hU  or T  represents the thermal potential. Heat transfer analyses 
show that the entransy of an object in a capacitor describes its heat transfer ability, as the electrical 
energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer 
processes, as a measurement of the heat transfer irreversibility with the dissipation related thermal 
resistance. Biot  [46] introduced a similar concept in the 1950s in his derivation of the differential 
conduction equation using the variation method. Eckert et al. [47] summarized that Biot formulates a 
variational equivalent of the thermal conduction equation from the ideas of irreversible thermodynamics 
to define a thermal potential and a variational invariant. The thermal potential plays a role analogous to 
the potential energy while the variational invariant is related to the concept of dissipation function. 
However, Biot did not further expand on the physical meaning of the thermal potential and its application 
to heat transfer optimization was not found later except in approximate solutions to anisotropic 
conduction problems. The heat transfer ability lost in heat transfer process was called as entransy 
dissipation, and the entransy dissipation per unit time and per unit volume was deduced as [45]: 
 

hE q Tφ = ⋅∇  (2) 
 
where q  is thermal current density vector, and T∇  is the temperature gradient. In steady-state heat 
conduction, hE φ  can be calculated as the difference between the entransy input and the entransy output of 
the object, i.e. 
 

, ,h h in h outE E Eφ φ φ= −  (3) 
 
The entransy dissipation rate of the whole volume in the “volume to point” conduction is  
 

, ,,h V h h A h
V A

E E dv E E dsφ φ φ φ= =∫ ∫  (4) 

 
where ,h VE φ  corresponds to three-dimensional model, and ,h AE φ  corresponds to two-dimensional model. 
The equivalent thermal resistance for multi-dimensional heat conduction problems with specified heat 
flux boundary condition was given as follows  [45]. 
 

, ,
2 2,h V h A

h h
h h

E E
R R

Q Q
φ φ= =  (5) 

 
where hQ  is the whole heat flow (thermal current). The corresponding mean temperature difference was 
defined as: 
 

h hT R Q∆ =  (6) 
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The concepts of entransy and entransy dissipation were used to develop the extremum principle of 
entransy dissipation for heat transfer optimization: For a fixed boundary heat flux, the conduction 
process is optimized when the entransy dissipation is minimized (minimum temperature difference), 
while for a fixed boundary temperature, the conduction is optimized when the entransy dissipation is 
maximized (maximum heat flux). The extremum principle of entransy dissipation was used in 
optimization of heat conduction [48,49], heat convection[50-53], radiative heat transfer  [54] and heat 
exchanger [55-58]. The extremum principle of entransy dissipation and its application has also been 
reviewed by Refs.[59-63]. 
Chen et al. [64] firstly combined the extremum principle of entransy dissipation with constructal theory, 
and optimized the rectangular element by taking entransy dissipation rate minimization as objective. The 
optimization results showed that when the thermal current density in the high conductive path is linear 
with the length, the optimized constructs based on entransy dissipation rate minimization are the same as 
those based on the maximum temperature minimization, and the mean temperature is 2/3 of the 
maximum temperature. When the thermal current density in the high conductive path is nonlinear with 
the length, the optimized constructs based on entransy dissipation rate minimization are different from 
those based on maximum temperature difference minimization. The constructs based on entransy 
dissipation rate minimization could reduce the mean temperature more effectively than the constructs 
based on minimization of maximum temperature.  
The multidisciplinary optimization of electromagnet was discussed by Gosselin and Bejan [65], the 
optimal geometries of electromagnet based on maximum temperature minimization for fixed magnetic 
induction were deduced. Chen et al. [66] made a further multidisciplinary optimization of electromagnet 
based on entransy dissipation rate minimization. The good performance of electromagnet requests high 
magnetic induction and low temperature. A complex-objective function based on maximization of 
magnetic induction and minimization of entransy dissipation rate will be discussed in this paper. 

 
2. Entransy dissipation rate versus electromagnet configuration 
A cylindrical coil is taken as an example in this paper. Figure 1 shows the front and side views of the 
solenoid. A wire is wound in many layers around a cylindrical space of radius inR . The outer radius of 
the coil is outR , and the axial length is 2L . The solenoid is considered as a continuous medium in which 
the electrical current density j  is a constant. The electrical current density inside the wire generates a 
one-dimensional magnetic field on the axis of symmetry of the coil. The heat generation rate per unit 
volume q′′′  is constant at the working state. 
 

 
 

Figure 1. The main features of solenoid geometry [65] 
 
The high thermal conductivity cooling discs of thickness 2D  are inserted into the solenoid to enhance 
heat transfer, and the discs are transversal and separate the solenoid into N  sub-coils, as illustrated in 
Figure 2. The fraction of the volume occupied by the discs is known and fixed by 
 

DN
L

φ =  (7) 
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where N  is the number of discs. Most of the volume must be filled by the winding, as required by the 
drive toward compactness, therefore 1φ . This means that the presence of the discs does not affect 
significantly the magnetic field. The thermal conductivity coefficient of the material is related to its 
structure, density, hydrous rate, temperature, etc. But the compactness of the solenoid filled by the 
winding is not propitious to heat conduction; and the thermal conductivities of the wire insulating 
materials commonly are: polystyrene 0.08, rubber 0.202-0.29, PVC 0.17, PU 0.25, etc. The thermal 
conductivity of high thermal conductivity materials commonly are silver 429, copper 401, gold 401, 
aluminum 237, etc. The thermal conductivity of high thermal conductivity materials is defined as pk , 

and the thermal conductivity of the solenoid is defined as 0k , then 0 / 1pk k << . It is assumed that all the 
boundaries are adiabatic except the exposed external surfaces of the discs, which serve as heat sinks, the 
heat transfer direction in the pk  material is the x -direction, and the heat transfer direction in the pk  
material is the r -direction. 
 

 
 

Figure 2. Solenoid cooled by transversal discs with high thermal conductivity [65] 
 
The non-dimensional mean temperature difference based on entransy dissipation rate of solenoid is 
described as [66] 
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⎡ ⎤− − +
= + + ⋅⎢ ⎥
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 (8) 

 
The solenoid is constructal optimized based on minimization of mean temperature difference in Ref. 
[66]. As shown in Figure 3, the minimum mean temperature difference increases as the magnetic 
induction increases. The optimization results of Ref. [66] were obtained with fixed magnetic induction. 

 
3. Complex-objective function of minimization of entransy dissipation rate and maximization of 
magnetic induction 
For the case of a constant electrical current density j , the magnetic induction is given by [65] 
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where 
 

out
out

in

( , )( , ) R LR L
R

=  (10) 

 
Eqs. (8) and (9) show that the mean temperature difference and magnetic induction are both related to 
electromagnet configuration. A complex-objective function to describe entransy dissipation rate and 
magnetic induction is defined as   
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 (11) 

 
The performance of electromagnet requests low entransy dissipation rate and high magnetic induction 

[54]. Defining G T∆  as the optimization objective can satisfy the request. The higher G T∆  is, the 

better the performance of electromagnet is. G T∆  is a complex-objective function that can describe the 
performance of electromagnet. It is the most important improvement of this paper comparing with those 
in Refs.[65, 66]. 
A dimensionless volume is defined as [65] 
 

2
out3

in

( 1)VV L R
R

π= = −  (12) 

 
Substituting Eq. (12) into Eq. (11) yields the complex-objective function of maximization of magnetic 
induction and minimization of entransy dissipation rate 
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 (13) 

 
4. Optimization of electromagnets 

4.1 Maximization of G T∆  at different N  

G T∆  versus outR  at different N  is shown in Figure 4. There exists a out,optR  that G T∆  achieves its 
maximum and the performance of electromagnet achieves its best. The bigger N  is, the higher 

( )
max

G T∆  is, and the better the performance of the electromagnet is.  
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out,optR  and optL  versus N when G T∆ achieves its maximum is shown in Figure 5. out,optR  decreases 

as N  increases, and optL  increases as N  increases. When the performance of electromagnet achieves its 
best, the solenoid becomes longer and thinner as N  increases.  

When the performance of electromagnet achieves its best, the corresponding G  versus N  and T∆  
versus N  are shown in Figures 6 and 7, respectively. As N  increases, the magnetic induction G  

increases and T∆  decreases. The magnetic induction ability and heat transfer ability are both improved 
as N  increases. 
 

 
 

Figure 3. Effect of G  on minT∆  versus N with fixed kφ  [66] 
 

 
 

Figure 4. Effect of N  on G T∆  versus outR with fixed kφ  and V  
 

 

 
 

Figure 5. Comparisons between optimal geometries at ( )
max

G T∆  and ( )
max

G T∆  
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Figure 6. G  corresponding to ( )

max
G T∆ versus N  

 

 
Figure 7. T∆  corresponding to ( )

max
G T∆ versus N  

 

4.2 Maximization of G T∆  at different V  

G T∆  versus outR  at different V  is shown in Figure 8. There exists a out,optR  that G T∆  achieves its 

maximum and the performance of electromagnet achieves its best. The bigger V  is, the higher G T∆  

is, and the better the performance of the electromagnet is. Figure 9 shows that the ( )
max

G T∆  increases 

and approaches a constant value as V  increases. The corresponding out,optR  and optL  versus V  are 
shown in Figure 10. When the performance of electromagnet achieves its maximum, the corresponding 

G  versus V  and T∆  versus V  are shown in Figures 11 and 12, respectively. As V  increases, the 

magnetic induction G  increases firstly and then decreases. T∆  decreases as V  increases. T T∆ ∆  
corresponding to different N  versus L  and 

outR  is shown in Figure 13, the variation of N , L  or outR  has 

little impact on T T∆ ∆ , and∆T  versus ∆T  keeps constant. 
 

 
Figure 8. Effect of V  on G T∆  versus outR with fixed kφ  and N  
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Figure 9. ( )
max

G T∆  versus V  with fixed kφ  and N  

 

 
Figure 10. Comparisons between optimal geometries at ( )

max
G T∆  and ( )

max
G T∆  

 

 
 

Figure 11. G  versus V  corresponding to ( )
max

G T∆  

 

 
 

Figure 12. T∆  corresponding to ( )
max

G T∆ versus V  
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Figure 13. T T∆ ∆  corresponding to different N versus L  and outR  
 
5. Conclusion 
Considering that the performance of electromagnet requests low entransy dissipation rate and high 
magnetic induction, a complex-objective function of magnetic induction and entransy dissipation rate is 
provided. The optimization results show that the performance of electromagnet is improved as the 

number N  of the high thermal conductivity cooling discs inserted increases. When )
~

/~( TG ∆  achieves 

its maximum max)
~

/~( TG ∆ , the solenoid becomes longer and thinner as N increases. As N increases, the 

magnetic induction increases and the mean temperature difference decreases. max)
~

/~( TG ∆ also increases 

as V~  increases, simultaneously, the magnetic induction increases firstly and then decreases, and the 
mean temperature difference decreases all along. The optimization with the complex-objective can lead 
to performance improvement of the electromagnet. 
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