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Abstract 
The optimal configuration of a refrigeration cycle operating between a finite low-temperature source and 
an infinite high-temperature sink are derived by using finite time thermodynamics based on a complex 
heat transfer law, including Newtonian heat transfer law, linear phenomenological heat transfer law, 
radiative heat transfer law, Dulong-Petit heat transfer law, generalized convective heat transfer law and 
generalized radiative heat transfer law, ( )n mQ T∝ ∆ . In the refrigeration cycle model the only 
irreversibility of finite rate heat transfer is considered. The optimal relation between cooling load and 
coefficient of performance (COP) of the refrigeration cycle is also derived by using an equivalent 
temperature of low-temperature source. The obtained results include those with various heat transfer laws 
and infinite low-temperature source, and can provide some theoretical guidelines for the designs of 
practical refrigerators. 
Copyright © 2016 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
There are two standard problems in finite time thermodynamics [1-20], one is to determine the objective 
function limits and the relations between objective functions for the given thermodynamic system, and 
another is to determine the optimal thermodynamic process for the given optimization objectives (i.e. to 
determine the optimal configurations) for the system which serves as a model for real processes. 
It is often the case in practice that the cooling load is generated from heat source which is carried by a 
finite amount of materiel with finite heat capacity, rather than from heat extracted from an isothermal, 
infinite spource. In the reversible (infinite-time) limit, the cycle, which extracts the maximum work from 
a finite heat source, is qualitatively different from the Carnot cycle, and its theoretical efficiency is 
considerably smaller [21].  
The optimal configurations of heat engines under different given conditions were obtained by Ondrechen 
et al. [22], Yan and Chen [23, 24], Xiong et al. [25], Chen et al. [26-29] and Li et al. [30]. Chen [31] 
discussed the optimal configuration of a class of endoreversible refrigerators, for which only the 
irreversible heat transfer process is concerned. They derived that the endoreversible Carnot refrigerator is 
the optimal configuration of these endoreversible refrigerators with Newtonian heat transfer law 
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according to the maximum coefficient of performance (COP) as the operating goal. Chen et al. [32] 
investigated the effect of heat leakage on the optimal configuration of refrigerator with consideration of 
finite heat capacity low-temperature source, infinite heat capacity high-temperature sink and Newtonian 
heat transfer law. Chen et al. [33] also given the unified description of endoreversible cycles for linear 
phenomenological heat transfer law 1( )Q T −∝ ∆ . The results obtained in Refs. [24-27, 30] show that heat 
transfer law has the significant influences on the optimal configurations and performance of heat engine 
cycles, and a study on the effect of heat transfer law on optimal configuration of refrigeration cycles is 
necessary.  
This paper will extend the previous work by using a complex heat transfer law, including Newtonian heat 
transfer law, linear phenomenological heat transfer law, radiative heat transfer law, Dulong-Petit heat 
transfer law, generalized convective heat transfer law and generalized radiative heat transfer law, 

( )n mQ T∝ ∆ , in the heat transfer processes between the refrigerator and its surroundings, to find the 
optimal configuration of the variable-temperature heat-reservoir refrigeration cycles. In the refrigeration 
cycle model the only irreversibility of finite rate heat transfer is considered. The optimal relation between 
cooling load and COP of the refrigerator is also derived by using an equivalent temperature of low-
temperature source. The optimal performance of endoreversible and irreversible Carnot refrigerator with 
infinite thermal-capacity (constant- temperature) heat reservoirs with the same heat transfer law were 
derived by Li et al. [34, 35]. The obtained results of this paper include those with various heat transfer 
laws and can provide some theoretical guidelines for the designs of practical refrigerators. 
 
2. Refrigeration model 
The generalized refrigeration cycle model and its surroundings to be considered in this paper are shown 
in Figure 1. The following assumptions are made for this model. The system adopted is a working fluid 
alternately connected to a heat source with finite heat capacity and to a heat sink with infinite heat-
capacity. The refrigerator operates in a cyclic fashion with a fixed time τ  allotted for each cycle. The 
low-temperature heat-source is assumed to have a constant heat-capacity C , its temperature is given by 

( )xT t , and its initial temperature is given by LT . The high-temperature heat-sink is assumed, for 
simplicity, to be infinite in size and therefore it has a fixed temperature, HT . The heat transfer between 
heat source, heat sink and working fluid obey a complex law, including Newtonian heat transfer law, 
linear phenomenological heat transfer law, radiative heat transfer law, Dulong-Petit heat transfer law, 
generalized convective heat transfer law and generalized radiative heat transfer law, ( )n mQ T∝ ∆ . The 
absorbed and released heats of the working fluid are LQ  and HQ , respectively. 
The two steps in the cycle during which the working fluid is disconnected from one reservoir and 
connected to another are taken to be reversibly adiabatic. It is assumed that these steps occur 
instantaneously, which implies that the temperature of the working fluid changes discontinuously. 
 

 
 

Figure 1. Model of the refrigeration cycle 
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3. Optimal configuration 
Considering that the heat transfer between the refrigerator and its surroundings follows a complex law 

( )n mQ T∝ ∆ . Then 
 

0
( )[ ( ) ]n n m

H H HQ g t T t T dt
τ

= −∫  (1) 

 

0
( )[ ( ) ( )]n n m

L L xQ g t T t T t dt
τ

= −∫  (2) 

 
where ( )Hg t  and ( )Lg t  are heat conductivities between heat sink, heat source and working fluid, 
respectively. The heat conductivity is product of the overall heat transfer coefficient and corresponding 
heat transfer surface area of the heat exchanger. It is assume that at 0t =  the working fluid is in contact 
with high-temperature heat sink and is separated from the low-temperature heat source by an adiabatic 
boundary. At a later time 1 1(0 )t t τ< < , contact with the heat sink is broken and the working fluid is 
placed in contact with the heat source. Therefore, one has the flowing relationships 

1

1

0
( )

0
H

H

g t t
g t

t t τ
≤ <⎧

= ⎨ ≤ <⎩
 (3) 

 
1

1

0 0
( )L

L

t t
g t

g t t τ
≤ <⎧

= ⎨ ≤ <⎩
 (4) 

 
where Hg  and Lg  are constants.  
From the first law of thermodynamics, the work input to the cycle is 
 

0
{ ( )[ ( ) ] ( )[ ( ) ( )] }n n m n n m

H H L xW g t T t T g t T t T t dt
τ

= − − −∫  (5) 

 
From the second law of thermodynamics, the entropy change of the working fluid per cycle is 
 

0

1 { ( )[ ( ) ] ( )[ ( ) ( )] } 0
( )

n n m n n m
H H L xS g t T t T g t T t T t dt

T t
τ

∆ = − − − =∫  (6) 

 
Furthermore, since the heat capacity of the heat source is assumed to be constant, one has 
 

( )L xdQ CdT t= −  (7) 
 
Substituting Equation (2) into Equation (7) yields 
 

( ) ( )[ ( ) ( )] 0n n m
x L xCT t g t T t T t
•

+ − =  (8) 
 

where ( ) ( )x xT t dT t dt
•

= . 
Our problem now is to determine the optimal configuration of the model cycle in which the minimum 
work input is needed under a given cycle duration τ  and cooling load LQ . Using Equations (5), (6) and 
(8), one has the modified Lagrangian  
 

( )[ ( ) ] ( )[ ( ) ( )] { ( )[ ( ) ]
( )

( )[ ( ) ( )] }  ( ){ ( ) ( )[ ( ) ( )] }

n n m n n m n n m
H H L x H H

n n m n n m
L x x L x

L g t T t T g t T t T t g t T t T
T t

g t T t T t t CT t g t T t T t

λ

µ
•

= − − − + −

− − + + −

 (9) 
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where λ  is the Lagrangian constant, and ( )tµ  is a function of time. The path for the working fluid which 
results in the minimum work for a given time interval { }0,τ  may now be obtained from the solution of 
the Euler–Lagrange equations. The Euler–Lagrange equations are given by 
 

[ ] 0
( ) ( )

L d L
T t dt T t

•

∂ ∂
− =

∂ ∂
 (10) 

 

[ ] 0
( ) ( )x x

L d L
T t dt T t

•

∂ ∂
− =

∂ ∂
 (11) 

 
For 1t t τ≤ < , substituting Equations (3), (4) and (9) into Equations (10) and (11), respectively, yields 
 

[ ( ) ( )] ( ){ [ ( ) 1] ( )} 0n n n
xT t T t mnT t t T tλ λ µ− + + + =  (12) 

 
1 1( )[ ( ) ( )] [ ( ) ( ) ] ( ) ( )n n n m

L x xmng T t T t T t T t t CT t tµ λ µ
•

− −− + − =  (13) 
 
From Equation (12) one can obtain 
 

1

[ ( ) ( )]
( ) 1

( ) ( )

n n
x

n

T t T t
t

T t mnT t
λλµ +

−
= − − −  (14) 

 
The derivative of Equation (14) with respect to t  is 
 

1

2

[ ( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( )]
( )

( ) ( )

n n n
x x x x

n
x

nT t T t T t n T t T t mn T t T t T t
t

mnT t T t
λ

µ
• • •

+•

+

− + + + −
=  (15) 

 
Substituting Equations (8), (14) and (15) into Equation (13) yields 
 

1 1( 1) ( )[ ( ) ( ) ( ) ( )] ( 1) ( )[ ( ) ( )] 0n n n n
xx xn m T t T t T t T t T t n T t T t T t

• • •
− −+ − − + − =  (16) 

 
The solution of Equation (16) is 
 

( 1) ( 1)[ ( ) ( )] ( ) ( )n n n m
xT t T t T t a mn− + +− =  (17) 

 
where ( )a mn  is a constant dependent on mn . 
Using the same way of calculation in the case of 1t t τ≤ < , one can obtain the relation of ( )T t  and HT  for 

10 t t≤ <  
 

1( 1) ( ) ( ) 0n n n
HT mn T t mnT tλ λ ++ − + =  (18) 

 
Equations (17) and (18) are the major results of this paper. They determine the relation between the 
temperatures of heat reservoirs and the working fluid. The heat source temperature ( )xT t  and the working 
fluid temperature may be obtained by using Equations (8), (17) and (18), i.e. the optimal configuration of 
the refrigeration cycles. 
 
4. Effects of heat transfer laws 
(1). When 1n = , the heat transfer law becomes the generalized convective heat transfer law, Equations 
(17) and (18) become  
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2 ( 1)

1[ ( ) ( )] ( ) ( ),    m
xT t T t T t a m t t τ− +− = ≤ <  (19) 

 
2

1( 1) ( ) ( ) 0,    0HT m T t mT t t tλ λ+ − + = ≤ ≤  (20) 
 
where ( )a m  is a constant dependent on m .  
(i). If 1m =  further, Equations (19) and (20) are the results of the refrigeration cycle with Newtonian heat 
transfer law. Combining Equations (8), (19) with (20) gives 
 

( ) ( )   xT t uT t= --- 1t t τ≤ <  (21) 
 

0 1

1 1

                                             
( )     

exp[ ( )( 1) ]     
H

L L

vT t t t
T t

T g t t u C t t τ
≤ <⎧

= ⎨ − − ≤ <⎩  (22) 

 
where u  and v  are two constants. Equations (21) and (22) are the same results of Refs. [19, 32]. They 
indicate that the temperatures of heat source and working fluid decrease exponentially with time in the 
time interval { }1,t τ , and the ratio of the temperatures of the working fluid and heat source is a constant. 
(ii). If 1.25m = , they are the results of the refrigeration cycle with Dulong-Petit heat transfer law [36]. In 
this case, the heat releasing process is still a constant temperature process. The varying laws of ( )xT t  and 

( )T t  in the heat absorbing process become complicate and follow the below relations 
 

8 9
1[ ( ) ( )] ( )xT t T t T t a−− = --- 1t t τ≤ <  (23) 

 
5 4( ) [ ( ) ( )]x L xCT t g T t T t

•

= − − --- 10 t t≤ <  (24) 
 
where 1a  is a constant.  
(2). When 1m = , the heat transfer law becomes the generalized radiative heat transfer law. Equations 
(17) and (18) become 
 

( 1) 2
1[ ( ) ( )] ( ) ( ),    n n n

xT t T t T t a n t t τ− +− = ≤ <  (25) 
 

1
1( 1) ( ) ( ) 0,    0n n n

HT n T t nT t t tλ λ ++ − + = ≤ ≤  (26) 
 
where ( )a n  is a constant dependent on n .  
(i). If 1n =  further, Equations (25) and (26) are the results of the refrigeration cycle with Newtown’s heat 
transfer law, i.e. Equations (21) and (22), they are the same results of Refs. [19, 32]. 
(ii). If 4n = , Equations (25) and (26) are the results of the refrigeration cycle with radiative heat transfer 
law. The temperatures of heat reservoirs and working fluid are complicate and follow the below relations 
 

4 4 5 2
2

1
4 4

[ ( ) ( )] ( )
    

( ) [ ( ) ( )]

x

x L x

T t T t T t a
t t

CT t g T t T t
τ

−

•

⎧ − =⎪ ≤ <⎨
⎪ = − −⎩

 (27) 

 
4 4 5

13 ( ) 4 ( ) 0      0HT T t T t t tλ λ+ + = ≤ ≤  (28) 
 
where 2a  is a constant. 
(iii). If 1n = − , Equations (25) and (26) are the results of the refrigeration cycle with linear 
phenomenological heat transfer law. Combining Equations (8), (25) and (26) gives 
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1
1

1

1

( )( )     
1 [ ( )( )]

( )
                                 0

1

L L

L L

H

H

T ag C t t t t
a T ag C t t

T t
T t t
bT

τ
− −⎧ ≤ <⎪ − − −⎪= ⎨

⎪ ≤ <
⎪ −⎩

 (29) 

 
where a  and b  are two constants. 
 
5. Fundamental optimal relation 
Combining the change in the entropy of the working fluid heat absorbing process 
 

ln(1 )x L LdS C Q CT= −  (30) 
 
With the condition of internal reversibility, one can introduce an equivalent temperature of the heat 
source 

ln(1 )
L L

L

x L L

Q QT
dS C Q CT

∗

= − = −
−

 (31) 

 
And an equivalent temperature of working fluid in the heat absorbing process 
 

LC HC L HT T Q Q
∗

=  (32) 
 
where HCT  is the temperature of working fluid at heat releasing process. Therefore, one can derive 
 

1 1( ) ( )n n m
L L LQ g T T tτ

∗ ∗

= − −  (33) 
 

1( )n n m
H H HC HQ g T T t= −  (34) 

 
W H LQ Q= −  (35) 
 

LQ / ( )LC LCHCW T T Tε
∗ ∗

= = −  (36) 
 
where ε  is the COP of the refrigeration cycle. 
Defining a ratio of period of two heat exchange processes ( f ) and the working fluid temperature ratio 

( x ) as follows: 1 1( )f t tτ= − , LC HCx T T
∗

= , where 0 L Hx T T≤ ≤ . 
Combining Equations (31)-(36) gives the cooling load of the refrigeration cycle as 
 

1

[ (1 )]/
(1 )(1 ) [ (1 )] [ (1 )]

m
n n n

H L H
L n m

f g T TR Q
f fr

τ ε ε ε
τ

ε ε ε ε ε

∗⎧ ⎫
− +⎪ ⎪= = ⎨ ⎬

+ + + + +⎪ ⎪⎩ ⎭

 (37) 

 
where H Lr g g= . Taking the derivative of R  with respective to f  and setting it equal to zero yields 
 

1 ( 1) ( 1) ( 1)[ (1 )]m nm m
of r ε ε− + − += +  (38) 

 
Substituting Equation (38) into Equation (37) yields 
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1 ( 1) (1 ) ( 1) 1

[ (1 ){ (1 1 ) }
{1 [ (1 )] }

n n n m
H L H

m mn m m

g T TR
r
ετ ε ε

ε ε

∗

+ − + +

+ + −
=

+ +
 (39) 

 
Equation (39) is another major result of this paper. It determines the optimal COP for the fixed cooling 

load. Since LT
∗

 in Equations (39) is a function of QL, it is independent of QL only if C approaches infinite. 
If C  approaches infinite, Equation (39) becomes the fundamental optimal relation between cooling load 
and COP of an endoreversible Carnot refrigerator coupled to infinite thermal capacity (constant-
temperature) heat reservoirs with a complex law ( )n mQ T∝ ∆  [34]. 
The relations between the optimal cooling load and COP with different values of m  and n  are shown in 
Figure 2. In the numerical calculations, 300HT K= , 260LT K= , 100 ( )C J kg K= •  and 

4 mn
H Lg g W K= =  are set. One can see that the heat transfer law has significant influences on the 

optimal relation between cooling load and COP of the generalized endoreversible refrigeration cycle. The 
cooling load is a monotonic decreasing function of COP when 0n >  and 0m > , and a parabolic-like 
curve when 0n <  and 0m > .  
 

 
 

Figure 2. The optimal relation between cooling load and COP of refrigerator with different heat transfer 
laws 

 
6. Conclusion 
The optimal configuration and performance of a refrigeration cycle operating between a finite low-
temperature source and an infinite high-temperature sink is studied. In the refrigeration model the only 
irreversibility of finite rate heat transfer is considered. The heat transfer obeys a complex heat transfer 
law, including Newtonian heat transfer law, linear phenomenological heat transfer law, radiative heat 
transfer law, Dulong-Petit heat transfer law, generalized convective heat transfer law and generalized 
radiative heat transfer law, ( )n mQ T∝ ∆ . The heat transfer law has the significant influence on the optimal 
relation between cooling load and COP of the generalized endoreversible refrigerator. The cooling load 
is a monotonic decreasing function of COP when 0n > and 0m > , and a parabolic-like curve when 0n <  
and 0m > . The obtained results include those with various heat transfer laws and infinite low-
temperature source, and can provide some theoretical guidelines for the designs of practical refrigerators. 
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