INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT

Volume 8, Issue 1, 2017 pp.73-82 Journal homepage: www.IJEE.IEEFoundation.org

Recovery of sulfur dioxide from gas mixture in packed bed column

Jafar Ghani Majeed

Department of Materials Engineering, College of Engineering, Al-Mustansiryia University, Baghdad, Iraq.

Received 29 July 2016; Received in revised form 1 Sep. 2016; Accepted 8 Sep. 2016; Available online 1 Jan. 2017

Abstract

Recovery of SO₂ from SO₂/Air mixture into aqueous sodium carbonate solution was performed using packed bed column in pilot scale. The aim of the study was to improve the recovery efficiency of this process, to find the proper operation conditions in the packed bed column, and to contribute to the application of this process in the industry. The SO₂-recovery efficiency was measured while the gas mixture rate, the inlet SO₂ concentration, sodium carbonate solution concentration, liquid temperature, and the liquid hold-up were changed according to experimental design. Computer program (Statgraphics/Experimental Design) was used to estimate the fitted linear model of SO₂-recovery efficiency (η) in terms of (*G*, *C*_{SO2}, *C*_{Na2CO3}, *T*, and *V*_L), and the economic aspects of the process. The accuracy of η model is ± 2.38 %. The linear model of η was adequate, and the operating parameters were significant, while the interactions were negligible.

Copyright © 2017 International Energy and Environment Foundation - All rights reserved.

Keywords: SO₂ absorption; Aqueous sodium carbonate solution; Backed bed column.

1. Introduction

Thermal power plants are major sources of air pollutants, the large amount of SO₂ emitted from the combustion of coal leads to severe air pollution and results in great harm to people's living, production and health, and has to be controlled. Several desulfurization schemes, such as fuel pretreatment, concurrent burning and adsorption, and flue gas post treatment, have been proposed [1]. The flue gas desulphurization (FGD) is the main technology used, and a great number of FGD methods have been developed, such as dry-, semidry- and wet-processes, among which the wet-process is more widely applied, due to lower operating cost and more stable operation, and limestone- or lime-based scrubbing is used. However, many of these FGD methods are not regenerative and pollute the environment. The traditional SO_2 absorption process requires a large column packed with various packings [2] or spray tower [3], rotating-stream tray scrubber [4], etc. Since the mass transfer efficiency is poor, the size of columns is large, leading to high capital and operating costs. Therefore, researches have been focused on developing regenerative processes and equipment with process intensification for absorption of SO₂ [5-7]. SO₂-removal by absorption into sodium citrate buffer solution is generally considered as a fast, safe, green, and economical method with the advantages of non-toxic reagent with negligible losses, simple process, no fouling problem, and low oxidation of SO₂. In the process, SO₂ in flue gas is absorbed by aqueous sodium citrate solution, and dissolved SO₂ is subsequently recovered from the solution by steam

stripping or other regenerative method, or the resulting absorbent solution react with H_2S to obtain sulphur, which can be separated by flotation [8-10]. The desulfurization of SO₂ with absorption and desorption in sodium citrate buffer solution. SO₂ is a major constituent in air pollution. SO₂ which affects the environment by no. of ways like acid rain, corrosions and severe damage to the health. SO₂ causes a wide variety of health and environmental impacts because of the way it reacts with other substances in the air. Particularly sensitive groups include people with asthma who are active outdoors and children, the elderly, and people with heart or lung disease. Removal of SO₂ from gas mixtures by chemical absorption is one of the most important processes for environmental protection. A great number of gas desulphurization methods have been developed throughout the world [11,12]. The most widespread processes are limestone-, or lime-based scrubbing [11-14], beside these, magnesium hydroxide [13, 14], sodium hydroxide [15] and organic solvents are also used as absorbents [16, 17].

A lot of research has been focused on regenerative processes [1, 8, 16-26]. The SO₂-removal by aqueous sodium carbonate solution received a considerable attention [18-28].

When sulfur dioxide in gas phase is absorbed into aqueous sodium carbonate solution, the following overall reaction between the dissolved sulfur dioxide and aqueous sodium carbonate solution may take place in the liquid phase [29], and can be expressed as:

$$SO_2 + Na_2CO_3 \rightarrow Na_2SO_3 + CO_2 \tag{1}$$

Some FGD systems go a step further and oxidize the Na₂SO₃ to produce marketable Na₂SO₄ (Sodium Sulphate) [30, 31]:

$$Na_2SO_3 + 1/2O_2 \rightarrow Na_2SO_4 \tag{2}$$

The removal of sulfur dioxide from gas mixture by aqueous carbonate solutions is an important industrial absorption process for control of air pollution. Further, this chemical absorption process is of theoretical interest, since it is one in which the absorption is accompanied by a chemical reaction and the subsequent desorption of the volatile reaction product. However, there have been a few studies on the mechanism of chemical absorption of sulfur dioxide into aqueous carbonate solution [32].

2. Experimental work

2.1 Experimental apparatuses

The main equipment of the experimental apparatus as shown in Figure 1 is the packed bed column (1), and its heat exchanger (2), the size to gather of 1.5 m height and 0.10 m in diameter. The main complementary apparatus and pipe lines are as follows: Temperature gage (3), discharge point (4), digital pH- meter (5), compressed air in (6), sulfur dioxide gas in (7), air rotameter (8), sulfur dioxide rotameter (9), mixing chamber (10), gas mixture in (11), aqueous Na₂CO₃ solution in (12), condenser (13), liquid recycle to top of the column (14), cold water out from condenser (16), cold water in to condenser (17), gas mixture (18), droplet collector (19), SO₂ gas analyzer (20), gas mixture out to atmosphere (21), water to heat exchanger from thermostat (22), water from heat exchanger to thermostat (23), solid Na₂CO₃ (24), process water (25), mixing tank to prepare aqueous Na₂CO₃ solution (26), feeding pump of aqueous Na₂CO₃ solution to packed column (27), aqueous Na₂CO₃ solution feeding tank (28), thermostat water bath (29), (Na₂SO₄+Na₂SO₃, and CO₂) in solution from bottom of column (30), (Na₂SO₄+Na₂SO₃, and CO₂) solution tank (31) CO₂ gas out (32), discharge pump of (Na₂SO₄ + Na₂SO₃) solution (33) solution for further processing plant to oxidized Na₂SO₃ to Na₂SO₄, and producing dry powder Na₂SO₄ (34).

2.2 Operating parameters

The preliminary experiments were carried out to absorb of SO_2 gas from gas mixture into aqueous Na_2CO_3 solution in pilot scale packed column by using experimental apparatus as shown in Figure 1 to find the proper operating parameters could be used in this work. Operating variable parameters were as follows:

* Gas mixture flow rate (G): $25-35 \text{ m}^3/\text{h}$.

- * SO₂ gas inlet concentration (C_{SO2}): 500-3500 ppm.
- * Aqueous Na₂CO₃ solution concentration (C_{Na2CO3}): 5-35 wt %.
- * Liquid temperature (T): 20-50 °C.
- * Liquid holdup in the column (V_L): 0.02-0.04 m³.

Figure 1. Schematic diagram of the experimental apparatus for SO₂ gas absorption from gas mixture into aqueous Na₂CO₃ solution in packed column.

2.3 Recovery of SO₂ from SO₂/Air gas mixture

Experiments of absorption of SO₂ gas from SO₂/Air gas mixture into aqueous Na₂CO₃ solution have been carried out using the mentioned various operating parameters by using experimental apparatus as shown in Figure 1, according to experimental design plan seen in Table 1. The gas mixture (11) enters the packed column (1) from lower part, while Na₂CO₃ solution from solution tank (28) by feeding pump (27) enters the upper part of the column. The heat exchanger (2) is maintain the desired liquid temperature constant in packed column (1) during the all experiments runs by circulation water [22, 23] from and to thermostat water bath (29) through the heat exchanger (2). Gas mixture from the top of column enters the condenser (13) to condense any liquid drops with it by cold water (17). The liquid (14) returns back to upper part of the column as recycle liquid or drain out from drain line (15). The gas from condenser pass through droplet collector (19), to separate any liquid drops in it. The SO₂ gas concentration in dry outlet gas mixture is measured by SO₂-gas analyzer (20), then the gas mixture to atmosphere air with few traces of SO₂ gas (21). In the column, the liquid temperature measured by temperature gage (3), while the pH of the liquid is measured by digital pH-meter (5). The resultant reaction product (30) contains (Na₂SO₄ + little amount of Na₂SO₃ + CO₂) in solution from downer part of column sent to solution tank (31). The CO₂ gas (32) evolves to atmosphere air. In stirred tank (31) there is $(Na_2SO_4 \text{ and little amount of } Na_2SO_3)$ solution, it is difficult to separate them from each other, for that reason transferred by the discharge pump (33) to further processing to oxidize Na_2SO_3 , and to producing dry powder of Na_2SO_4 .

Run	Gas mixture	SO ₂ gas inlet	Na ₂ CO ₃ solution	Liquid	Liquid holdup in
No.	flow rate (G)	concentration (C_{SO2})	concentration (C_{Na2CO3})	temperature (T)	the column (V_L)
	(m^{3}/h)	(ppm)	(wt %)	(°C)	(m ³)
1	35	500	5	50	0.04
2	35	500	5	20	0.04
3	25	3500	5	20	0.02
4	25	500	5	50	0.04
5	35	3500	5	20	0.02
6	35	3500	35	20	0.02
7	30	2000	20	35	0.03
8	35	500	35	50	0.04
9	35	3500	35	50	0.02
10	25	3500	35	20	0.04
11	30	2000	20	35	0.03
12	25	500	5	20	0.04
13	25	3500	35	50	0.02
14	35	3500	35	20	0.04
15	25	3500	35	50	0.04
16	25	500	35	50	0.02
17	25	500	35	20	0.02
18	35	500	35	20	0.04
19	35	3500	5	50	0.04
20	35	500	35	50	0.02
21	25	3500	5	20	0.04
22	25	3500	5	50	0.04
23	25	500	35	20	0.04
24	35	3500	35	50	0.04
25	35	3500	5	50	0.02
26	35	500	5	50	0.02
27	35	500	5	20	0.02
28	35	3500	5	20	0.04
29	25	3500	5	50	0.02
30	25	3500	35	20	0.02
31	25	500	35	50	0.04
32	25	500	5	50	0.02
33	30	2000	20	35	0.03
34	35	500	35	20	0.02
35	25	500	5	20	0.02

Table 1. Experimental design plan for absorption of SO₂ into aqueous Na₂CO₃ solution.

3. Results and discussion

The absorption of SO₂ gas from SO₂/Air gas mixture into aqueous sodium carbonate (Na₂CO₃) solution were carried out according to experimental design plan in Table 1 with the variation of gas mixture flow rate (G), SO₂ gas inlet concentration (C_{SO2}), aqueous Na₂CO₃ solution concentration (C_{Na2CO3}), experimental liquid temperature (T) and liquid holdup in the column (V_L).

3.1 Definition of recovery efficiency

The SO₂ Recovery efficiency (η) was defined as [8, 33, 34]:

76

$$\eta = \frac{C_{SO_{2,in}} - C_{SO_{2,out}}}{C_{SO_{2,in}}} \times 100$$
(3)

where, η = Recovery efficiency in (%), $C_{SO2, in}$ = SO₂ gas inlet concentration in gas mixture in (ppm), $C_{SO2, out}$ = SO₂ gas outlet concentration in gas mixture in (ppm).

Recovery efficiency (η) was calculated by using equation (3). The Recovery efficiency of SO₂ gas from gas mixture SO₂/Air was in the range of $\eta = 70.10 - 95.60$ %. The results of Recovery efficiency are summarized in Table 2.

Table 2. Data base of experimental design and results of SO₂ gas recovery from gas mixture (SO₂ /Air) into aqueous Na₂CO₃ solution.

Run	Gas mixture	SO ₂ gas inlet	Na ₂ CO ₃ solution	Liquid	Liquid holdup	Recovery
No.	flow rate	concentration	concentration	temperature	in the column	efficiency
	(G)	(C_{SO2})	(C_{Na2CO3})	(T)	(V_L)	(η)
	(m^3/h)	(ppm)	(wt %)	(°C)	(m ³)	(%)
1	35	500	5	50	0.04	70.90
2	35	500	5	20	0.04	73.30
3	25	3500	5	20	0.02	91.30
4	25	500	5	50	0.04	72.70
5	35	3500	5	20	0.02	86.40
6	35	3500	35	20	0.02	88.45
7	30	2000	20	35	0.03	85.35
8	35	500	35	50	0.04	75.76
9	35	3500	35	50	0.02	86.10
10	25	3500	35	20	0.04	95.60
11	30	2000	20	35	0.03	83.40
12	25	500	5	20	0.04	78.90
13	25	3500	35	50	0.02	93.30
14	35	3500	35	20	0.04	90.20
15	25	3500	35	50	0.04	91.10
16	25	500	35	50	0.02	83.85
17	25	500	35	20	0.02	83.10
18	35	500	35	20	0.04	80.60
19	35	3500	5	50	0.04	90.10
20	35	500	35	50	0.02	72.20
21	25	3500	5	20	0.04	93.50
22	25	3500	5	50	0.04	90.10
23	25	500	35	20	0.04	85.30
24	35	3500	35	50	0.04	89.80
25	35	3500	5	50	0.02	85.60
26	35	500	5	50	0.02	70.10
27	35	500	5	20	0.02	76.20
28	35	3500	5	20	0.04	89.20
29	25	3500	5	50	0.02	86.90
30	25	3500	35	20	0.02	95.10
31	25	500	35	50	0.04	84.80
32	25	500	5	50	0.02	70.30
33	30	2000	20	35	0.03	82.70
34	35	500	35	20	0.02	80.15
35	25	500	5	20	0.02	76.20
35	25	500	5	20	0.02	76.20

The effects of operating parameters on Recovery efficiency of SO_2 gas from SO_2 /Air gas mixture could be seen as in the following Figures:

Figure 2. Effect of SO_2 gas concentration, and gas flow rate on Recovery efficiency of SO_2 gas from SO_2 /Air mixture.

Figure 4. Effect of liquid temperature, and liquid holdup on Recovery efficiency of SO₂ gas from SO₂/Air mixture.

Figure 6. Effect of Na_2CO_3 concentration, and gas flow rate on Recovery efficiency of SO_2 gas from SO_2/Air mixture.

Figure 3. Effect of liquid temperature, and Na₂CO₃ concentration on Recovery efficiency of SO₂ gas from SO₂/Air mixture.

Figure 5. Effect of Na₂CO₃ concentration, and liquid holdup on Recovery efficiency of SO₂ gas from SO₂/Air mixture.

Figure 7. Effect of liquid temperature, and SO₂ concentration on Recovery efficiency of SO₂ gas from SO₂/Air mixture.

From Figures 2-8, the Recovery efficiency of SO₂ gas from SO₂/Air gas mixture (η) is increased with the increase in inlet SO₂ gas concentration ($C_{SO2,in}$), aqueous Na₂CO₃ solution (C_{NaCO3}), and liquid holdup (V_L), and decreased with an increase in gas mixture flow rate (G), and liquid temperature (T). The biggest effect of operating parameters on Recovery efficiency was G, and smallest one was (V_L).

3.2 Correlation model of Recovery efficiency

Computer program (Statgraphics/Experimental Design) was used to estimate the fitted linear model of Recovery efficiency (η) for SO₂ gas recovery from SO₂/air gas mixture into aqueous Na₂CO₃ solution in packed bed column in terms of operating parameters: *G*, *C*_{SO2}, *C*_{NaCO3}, *T*, and *V*_L. The output shows the results of fitting a multiple linear regression model to describe the relationship between Recovery efficiency and 5 independent variables.

The equation of the fitted model is:

$$\eta = 85.623 - 0.419 G + 0.004 C_{SO2} + 0.154 C_{Na2CO3} - 0.104 T + 83.156 V_L$$
(4)

Since the P-value in the ANOVA Table 3 is less than 0.05, there is a statistically significant relationship between the variables at the 95.0% confidence level.

		Standard	Т	
Parameter	Estimate	Error	Statistic	P-value
Constant	85.6227	3.12356	27.4119	0.0000
Gas flow rate	- 0.418688	0.084302	- 4.96652	0.0000
Liquid holdup	83.1562	42.151	1.97282	0.0581
Liquid temperature	- 0.103937	0.0281007	- 3.69876	0.0009
Na ₂ CO ₃ concentration	0.153562	0.0281007	5.46473	0.0000
SO_2 concentration	0.00434146	0.000281007	15.4497	0.0000

Table 3. ANOVA.

The R-Squared statistic indicates that the model as fitted explains 91.4654% of the variability in Recovery efficiency. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 89.994%. The standard error of the estimate shows the standard deviation of the residuals to be 2.38442. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 1.72457 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in

your data file. Since the P-value is greater than 0.05, there is no indication of serial autocorrelation in the residuals at the 95.0% confidence level.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0581, belonging to Liquid holdup. Since the P-value is greater or equal to 0.05, that term is not statistically significant at the 95.0% or higher confidence level. Consequently, you should consider removing Liquid holdup from the model.

The validity range for the model in equation (4) is:

 $20 \le T \le 50$ °C; $25 \le G \le 35$ m³/h; $0.02 \le V_L \le 0.04$ m³; $5 \le C_{Na2CO3} \le 35$ wt %; $500 \le C_{SO2} \le 3500$ ppm. The accuracy of the η model is ± 2.38 %.

The linear model in equation (4) is adequate, and the operating parameters were significant and were in ordered of $C_{SO2} > C_{Na2CO3} > G > T > V_L$. The interactions of operating parameters were negligible.

The Pareto Chart of Recovery efficiency (η) of SO₂ gas from SO₂/Air gas mixture could be seen in Figure 9. The main effects of operating parameters on Recovery efficiency of SO₂ gas from gas mixer SO₂/Air is seen in Figure 10. The observed and predicted Recovery efficiency of SO₂ gas from SO₂/Air gas mixture represents in Figure 11.

Standardized Pareto Chart for Recovery efficiencyof SO2 gas.

Figure 9. Effects of operating parameters on Recovery efficiency of SO₂ gas.

Figure 10. Main effects of operating parameters on Recovery efficiency of SO₂ gas.

3.30ptimal response

The optimum operating parameters for present work were obtained using the computer program to analyze the experimental results. The goal of optimizing was to maximize the Recovery efficiency (η) of SO₂ gas from SO₂/Air gas mixture. The results of optimizing were summarized in Table 4.

Operating parameters	Low value	High value	Optimum value
Gas mixture flow rate (m^3/h) :	25	35	25
SO ₂ gas inlet conc. (ppm):	500	3500	3500
Na ₂ CO ₃ solution conc. (wt %):	5	35	35
Liquid temperature (°C):	20	50	20
Liquid hold up in column (m ³):	0.02	0.04	0.04
Recovery efficiency of SO ₂ gas from	96.97		

Table 4. Optimum operating parameters and optimum Recovery efficiency of SO₂ gas.

4. Conclusions

- Recovery of SO₂ gas from SO₂/Air gas mixture into Na₂CO₃ solution was carried out in pilot scale packed bed column. The Recovery efficiency (η) of SO₂ gas was measured at various operating conditions (*G*, *C*_{SO2}, *C*_{Na2CO3}, *T*, and *V*_L) according to experimental design. The measured Recovery efficiency was in the range of $\eta = 70.10 95.60$ %. The η could be improved and increases by increasing in the *C*_{SO2}, *C*_{Na2CO3}, and *V*_L and with decreasing of *G*, and *T*.
- A computer program (Statgraphics/Experimental Design) was used to estimate the linear fitted model of Recovery efficiency (η) in terms of operating conditions (G, CSO₂, CNa₂CO₃, T, and V_L. The linear fitted model of η was adequate, and operating parameters were significant, while the interactions were negligible. The accuracy of Recovery efficiency model is ± 2.38 %.
- Using the same computer program the optimum operating conditions were obtained with values of G = 25 m³/h, C_{SO2} = 3500 ppm, C_{Na2CO3} = 35 wt %, T = 20 °C, and V_L = 0.04 m³. The optimum Recovery efficiency (η) was in value of 96.97 %.
- On the base of results of measured Recovery efficiency, we conclude to scaling up the size of the pilot plant used in present work by 3-4 times to commercial size plant and using the optimum operating parameters obtained in future work.

References

- [1] X.Jiang, Y.Liu, Gu, Meiduo. Absorption of sulfur dioxide with sodium citrate buffer solution in rotating packed bed. Chinese J. of Chem. Eng. 2011, 19 (4), 687-692.
- [2] K.Soren, L.Michael, D.Kim. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant.. Eng. Chem. Res. 1998, 37 (7), 2792-2806.
- [3] R. Frank, K. Rudolf, W. Siegfried. The kinetics of the absorption of sulfur dioxide in calcium hydroxide suspensions. Chem. Eng. Sci. 1991, 46 (4), 939-947.
- [4] W.S. Sun, Z.B. Wu, Y. Li, T.E. Tan. Sodium-enhanced limestone WET FGD in rotating-stream tray scrubber. Environ. Sci. 2002, 23 (5), 105-108.
- [5] O. Erga.SO₂ recovery by means of adipic acid buffers. Ind. Eng. Chem. Fundam.1986, 25 (4), 692-695.
- [6] B.K. Dutta, R.K. Basu, A. Pandit, P. Ray. Absorption of SO₂ in citric acid sodium-citrate buffer solutions.Ind. Eng. Chem. Res. 1987, 26 (7), 1291-1296.
- [7] R.V. Bravo, R.F.Camacho, V.M. Moya, R.M. Agudo. Absorption of SO₂ into tribasic sodium citrate solutions. Chem. Eng. Sci. 1993, 48 (13), 2399-2406.
- [8] E.Bekassy-Molnar, E.Marki, J.G.Majeed. Sulfur dioxide absorption in air-lift-tube absorbers by sodium citrate buffer solution. Chem. Eng. Process 2005, 44 (9), 1039-1046.
- [9] R. Klaassen. Achieving flue gas desulphurization with membrane gas absorption. Filtr. & Sep. 2003, 40 (10), 26-28.
- [10] J.Q. Xue, L.A. Meng, B.B. Shen, S.Y. Du, X.Z. Lan. Study on desorbing sulfur dioxide from citrate solution by ultrasonification. Chin. J. Chem. Eng. 2007, 15 (4), 486-491.
- [11] R.K. Srivastava. Controlling SO₂ emissions: a review of technologies, Report, U.S. Environmental Protection Agency. National Risk Management Research Laboratory, Research Triangle Park NC 27711, (November 2000), 1–100.
- [12] A.L. Kohl, F.C. Riesenfeld. Gas Purification, 4th ed., Gulf Publishing Co., Houston, 1985, 1–356.
- [13] M.V. Dagaonkar, A.A.C.M. Beenackers, V.G. Pangarkar. Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirred cell. Chem. Eng. Sci. 2001, 56 (3), 1095–1101.

- [14] M.V. Dagaonkar, A. A.C.M. Beenackers, V.G. Pangarkar. Enhancement of gas-liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: absorption of sulfur dioxide into aqueous slurries of Ca(OH)₂ and Mg(OH)₂ particles. Chem. Eng. J. 2001, 81 (1–3), 203–212.
- [15] M. Schultes. Absorption of sulfur dioxide with sodium hydroxide solution in packed columns. Chem. Eng. Technol. 1998, 21 (2), 201–206.
- [16] M. H. H. vanDam, A. S. Lamine, D. Roizard, P. Lochon, C. Roizard. Selective sulfur dioxide removal using organic solvents. Ind. Eng. Chem. Res. 1997, 36 (11), 4628–4837.
- [17] D. Brasoveanu, M. Mihai, M. Belcu, I. Untea. The sulphur dioxide absorption process in structural bases. Interface equilibrium in dn- buthylamine and methyldiethanol amine aqueous solutions". Rev. Chim. 2002, 53 (1), 3–8.
- [18] O. Erga. SO₂ recovery by sodium citrate solution scrubbing. Chem. Eng. Sci. 1980, 35, 162–169.
- [19] O. Erga. SO₂ recovery by means of adipic acid buffers". Ind. Eng. Chem. Fundam. 1986, 25, 692–695.
- [20] O. Erga. A New Regenerable Process for Recovering of SO₂. in Proceedings of the International Meeting of Chemical Engineering (ACHEMA'88), Frankfurt am Main (June 1988), 5–11.
- [21] E. Bekassy-Molnar, E. Marki, I. Bagyi, Gy. Vatai. Absorption-desorption procedure for regenerable sulphur dioxide recovery. in Proceedings of the Distillation and Absorption'97, Maastricht, The Netherlands, 1 (September 1997), 467–476.
- [22] S. Bengtsson. The Flakt–Boliden SO₂ recovery process". Chem. Can. 1981, 33, 24–27.
- [23] B. K. Dutta, R.K. Basu, A. Padit, P. Ray. Absorption of SO₂ in citric acid sodium-citrate buffer solutions. Ind. Eng. Chem. Res. 1987, 26, 1291–1296.
- [24] S. Vasan. Citrex process for SO₂ removal. Chem. Eng. Prog. 1975, 71, 61–66.
- [25] R.V. Bravo, R.F. Camacho, V.M. Moya, R.M. Agudo. Absorption of SO₂ into tribasic sodium citrate solutions. Chem. Eng. Sci. 1993, 48, 1–8.
- [26] N.R. Pakala, S. Varanasi, S.E. Leblanc. Citrate-based contained liquid membranes for flue-gas desulfurization. Ind. Eng. Chem. Res. 1993, 32, 553–563.
- [27] B. Skrbic, I. Cvejanov, R. Paunovic. Liquid holdup determination in packed columns for Sulfurdioxide absorption. Gas Sep. Purif. 1993, 7, 27–30.
- [28] H. Hikita, Y. Konishi. Absorption of sulfur dioxide into aqueous sodium carbonate solutions and desorption of carbon dioxide. Osaka prefecture university education and research archives 1981, 29-40.
- [29] A. K. Sharma, D.S. N. Prasad, S. Acharya, and R. Sharma. Utility and Application of FGD System (Flue Gas Desulphurization) in Chemical and Environmental Engineering. International J. of Chem. Eng. and Applications 2012, 3 (2), 129-135.
- [30] P. BGrgic, I. tursic and J. Bercic G. Influence of atmospheric carboxylic acids on catalytic oxidation of sulfur (IV). Journal of Atmospheric Chemistry 2006, 54 (2), 103–120.
- [31] K. N. Sheth Patel and J. P. Neha. Effect of concentration in absorption of Sulfur dioxide with sodium hydroxide. Env. Poll. Cont. J. 2006, 9, 14-18.
- [32] P. L. Inmaculada, O. R. Aldaco, A. Garea, A Irabien. Recovery of Sulfur Dioxide Using Non-Dispersive Absorption. International J. of Chem. Reactor Eng. 2007, 5, 1-9.
- [33] J.G. Majeed, B. Korda, E. Bekassy-Molnar. Comparison of the efficiencies of sulfur dioxide absorption using calcium carbonate slurry and sodium hydroxide solution in an ALT reactor. Gas Sep. Purif. 1995, 9 (2), 111–120.
- [34] J.G. Majeed. Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column. Inter. J. of Modern Eng. Res. 2014, 4 (2), 23-35.

Jafar Ghani Majeed is asst. Professor at Al-Mustansiryia University, College of Engineering, Department of Materials Engineering, Baghdad, Iraq. He has Ph.D. in Chemical Engineering from Technical University of Budapest, Budapest, Hungary (1994). He supervises MSc. students. Asst. Prof. Majeed's main research interests are in Gas/Air absorption for environment protection from toxic gases, and in field of metals corrosion in acidic mediums. E-mail address: drjafar2005@yahoo.com